/* * Lie.h * * Created on: Jan 5, 2010 * Author: Richard Roberts */ #pragma once #include #include namespace gtsam { template T expmap(const Vector& v); /* Exponential map about identity */ // The following functions may be overridden in your own class file // with more efficient versions if possible. // Compute l1 s.t. l2=l1*l0 template inline T between(const T& l1, const T& l2) { return compose(inverse(l1),l2); } // Log map centered at l0, s.t. exp(l0,log(l0,lp)) = lp template inline Vector logmap(const T& l0, const T& lp) { return logmap(between(l0,lp)); } /* Exponential map centered at l0, s.t. exp(t,d) = t*exp(d) */ template inline T expmap(const T& t, const Vector& d) { return compose(t,expmap(d)); } /** * Base class for Lie group type */ template class Lie { public: /** * Returns dimensionality of the tangent space */ size_t dim() const; /** * Returns Exponential mapy */ T expmap(const Vector& v) const; /** * Returns Log map */ Vector logmap(const T& lp) const; }; /** Call print on the object */ template inline void print_(const T& object, const std::string& s = "") { object.print(s); } /** Call equal on the object */ template inline bool equal(const T& obj1, const T& obj2, double tol) { return obj1.equals(obj2, tol); } /** Call equal on the object without tolerance (use default tolerance) */ template inline bool equal(const T& obj1, const T& obj2) { return obj1.equals(obj2); } // The rest of the file makes double and Vector behave as a Lie type (with + as compose) // double,+ group operations inline double compose(double p1,double p2) { return p1+p2;} inline double inverse(double p) { return -p;} inline double between(double p1,double p2) { return p2-p1;} // double,+ is a trivial Lie group template<> inline double expmap(const Vector& d) { return d(0);} template<> inline double expmap(const double& p,const Vector& d) { return p+d(0);} inline Vector logmap(const double& p) { return repeat(1,p);} inline Vector logmap(const double& p1,const double& p2) { return Vector_(1,p2-p1);} // Global functions needed for double inline size_t dim(const double& v) { return 1; } // Vector group operations inline Vector compose(const Vector& p1,const Vector& p2) { return p1+p2;} inline Vector inverse(const Vector& p) { return -p;} inline Vector between(const Vector& p1,const Vector& p2) { return p2-p1;} // Vector is a trivial Lie group template<> inline Vector expmap(const Vector& d) { return d;} template<> inline Vector expmap(const Vector& p,const Vector& d) { return p+d;} inline Vector logmap(const Vector& p) { return p;} inline Vector logmap(const Vector& p1,const Vector& p2) { return p2-p1;} /** * Three term approximation of the BakerÐCampbellÐHausdorff formula * In non-commutative Lie groups, when composing exp(Z) = exp(X)exp(Y) * it is not true that Z = X+Y. Instead, Z can be calculated using the BCH * formula: Z = X + Y + [X,Y]/2 + [X-Y,[X,Y]]/12 - [Y,[X,[X,Y]]]/24 * http://en.wikipedia.org/wiki/BakerÐCampbellÐHausdorff_formula */ template T BCH(const T& X, const T& Y) { static const double _2 = 1. / 2., _12 = 1. / 12., _24 = 1. / 24.; T X_Y = bracket(X, Y); return X + Y + _2 * X_Y + _12 * bracket(X - Y, X_Y) - _24 * bracket(Y, bracket(X, X_Y)); } /** * Declaration of wedge (see Murray94book) used to convert * from n exponential coordinates to n*n element of the Lie algebra */ template Matrix wedge(const Vector& x); /** * Exponential map given exponential coordinates * class T needs a wedge<> function and a constructor from Matrix * @param x exponential coordinates, vector of size n * @ return a T */ template T expm(const Vector& x, int K=7) { Matrix xhat = wedge(x); return expm(xhat,K); } } // namespace gtsam