%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief A structure from motion example % @author Duy-Nguyen Ta %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% import gtsam.* %% Assumptions % - Landmarks as 8 vertices of a cube: (10,10,10) (-10,10,10) etc... % - Cameras are on a circle around the cube, pointing at the world origin % - Each camera sees all landmarks. % - Visual measurements as 2D points are given, corrupted by Gaussian noise. % Data Options options.triangle = false; options.nrCameras = 10; options.showImages = false; %% Generate data [data,truth] = VisualISAMGenerateData(options); measurementNoiseSigma = 1.0; pointNoiseSigma = 0.1; poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]'; %% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph) graph = NonlinearFactorGraph; %% Add factors for all measurements measurementNoise = noiseModel.Isotropic.Sigma(2,measurementNoiseSigma); for i=1:length(data.Z) for k=1:length(data.Z{i}) j = data.J{i}{k}; graph.add(GenericProjectionFactorCal3_S2(data.Z{i}{k}, measurementNoise, symbol('x',i), symbol('p',j), data.K)); end end %% Add Gaussian priors for a pose and a landmark to constrain the system posePriorNoise = noiseModel.Diagonal.Sigmas(poseNoiseSigmas); graph.add(PriorFactorPose3(symbol('x',1), truth.cameras{1}.pose, posePriorNoise)); pointPriorNoise = noiseModel.Isotropic.Sigma(3,pointNoiseSigma); graph.add(PriorFactorPoint3(symbol('p',1), truth.points{1}, pointPriorNoise)); %% Print the graph graph.print(sprintf('\nFactor graph:\n')); %% Initialize cameras and points close to ground truth in this example initialEstimate = Values; for i=1:size(truth.cameras,2) pose_i = truth.cameras{i}.pose.retract(0.1*randn(6,1)); initialEstimate.insert(symbol('x',i), pose_i); end for j=1:size(truth.points,2) point_j = truth.points{j}.retract(0.1*randn(3,1)); initialEstimate.insert(symbol('p',j), point_j); end initialEstimate.print(sprintf('\nInitial estimate:\n ')); %% Fine grain optimization, allowing user to iterate step by step parameters = LevenbergMarquardtParams; parameters.setlambdaInitial(1.0); parameters.setVerbosityLM('trylambda'); optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate, parameters); for i=1:5 optimizer.iterate(); end result = optimizer.values(); result.print(sprintf('\nFinal result:\n ')); %% Plot results with covariance ellipses marginals = Marginals(graph, result); cla hold on; plot3DPoints(result, [], marginals); plot3DTrajectory(result, '*', 1, 8, marginals); axis([-40 40 -40 40 -10 20]);axis equal view(3) colormap('hot')