/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file Pose2SLAMwSPCG.cpp * @brief A 2D Pose SLAM example using the SimpleSPCGSolver. * @author Yong-Dian Jian * @date June 2, 2012 */ #include #include #include #include #include #include using namespace std; using namespace gtsam; using namespace gtsam::noiseModel; /* ************************************************************************* */ int main(void) { // 1. Create graph container and add factors to it pose2SLAM::Graph graph ; // 2a. Add Gaussian prior Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin SharedDiagonal priorNoise = Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1)); graph.addPrior(1, priorMean, priorNoise); // 2b. Add odometry factors SharedDiagonal odometryNoise = Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); graph.addOdometry(1, 2, Pose2(2.0, 0.0, 0.0 ), odometryNoise); graph.addOdometry(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise); graph.addOdometry(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise); graph.addOdometry(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise); // 2c. Add pose constraint SharedDiagonal constraintUncertainty = Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); graph.addConstraint(5, 2, Pose2(2.0, 0.0, M_PI_2), constraintUncertainty); // print graph.print("\nFactor graph:\n"); // 3. Create the data structure to hold the initialEstimate estinmate to the solution pose2SLAM::Values initialEstimate; Pose2 x1(0.5, 0.0, 0.2 ); initialEstimate.insertPose(1, x1); Pose2 x2(2.3, 0.1,-0.2 ); initialEstimate.insertPose(2, x2); Pose2 x3(4.1, 0.1, M_PI_2); initialEstimate.insertPose(3, x3); Pose2 x4(4.0, 2.0, M_PI ); initialEstimate.insertPose(4, x4); Pose2 x5(2.1, 2.1,-M_PI_2); initialEstimate.insertPose(5, x5); initialEstimate.print("\nInitial estimate:\n "); cout << "initial error = " << graph.error(initialEstimate) << endl ; // 4. Single Step Optimization using Levenberg-Marquardt LevenbergMarquardtParams param; param.verbosity = NonlinearOptimizerParams::ERROR; param.verbosityLM = LevenbergMarquardtParams::LAMBDA; param.linearSolverType = SuccessiveLinearizationParams::CG; { param.iterativeParams = boost::make_shared(); LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, param); Values result = optimizer.optimize(); result.print("\nFinal result:\n"); cout << "simple spcg solver final error = " << graph.error(result) << endl; } { param.iterativeParams = boost::make_shared(); LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, param); Values result = optimizer.optimize(); result.print("\nFinal result:\n"); cout << "subgraph solver final error = " << graph.error(result) << endl; } { Values result = graph.optimizeSPCG(initialEstimate); result.print("\nFinal result:\n"); } return 0 ; }