%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief A structure from motion example % @author Duy-Nguyen Ta %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Assumptions % - Landmarks as 8 vertices of a cube: (10,10,10) (-10,10,10) etc... % - Cameras are on a circle around the cube, pointing at the world origin % - Each camera sees all landmarks. % - Visual measurements as 2D points are given, corrupted by Gaussian noise. % Data Options options.triangle = false; options.nrCameras = 10; options.showImages = false; %% Generate data [data,truth] = VisualISAMGenerateData(options); measurementNoiseSigma = 1.0; pointNoiseSigma = 0.1; poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]'; %% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph) graph = visualSLAMGraph; %% Add factors for all measurements measurementNoise = gtsamnoiseModelIsotropic.Sigma(2,measurementNoiseSigma); for i=1:length(data.Z) for k=1:length(data.Z{i}) j = data.J{i}{k}; graph.addMeasurement(data.Z{i}{k}, measurementNoise, symbol('x',i), symbol('p',j), data.K); end end %% Add Gaussian priors for a pose and a landmark to constrain the system posePriorNoise = gtsamnoiseModelDiagonal.Sigmas(poseNoiseSigmas); graph.addPosePrior(symbol('x',1), truth.cameras{1}.pose, posePriorNoise); pointPriorNoise = gtsamnoiseModelIsotropic.Sigma(3,pointNoiseSigma); graph.addPointPrior(symbol('p',1), truth.points{1}, pointPriorNoise); %% Print the graph graph.print(sprintf('\nFactor graph:\n')); %% Initialize cameras and points close to ground truth in this example initialEstimate = visualSLAMValues; for i=1:size(truth.cameras,2) pose_i = truth.cameras{i}.pose.retract(0.1*randn(6,1)); initialEstimate.insertPose(symbol('x',i), pose_i); end for j=1:size(truth.points,2) point_j = truth.points{j}.retract(0.1*randn(3,1)); initialEstimate.insertPoint(symbol('p',j), point_j); end initialEstimate.print(sprintf('\nInitial estimate:\n ')); %% Fine grain optimization, allowing user to iterate step by step parameters = gtsamLevenbergMarquardtParams; parameters.setlambdaInitial(1.0); parameters.setVerbosityLM('trylambda'); optimizer = graph.optimizer(initialEstimate, parameters); for i=1:5 optimizer.iterate(); end result = optimizer.values(); result.print(sprintf('\nFinal result:\n ')); %% Plot results with covariance ellipses marginals = graph.marginals(result); cla hold on; for j=1:result.nrPoints P = marginals.marginalCovariance(symbol('p',j)); point_j = result.point(symbol('p',j)); plot3(point_j.x, point_j.y, point_j.z,'marker','o'); covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P); end for i=1:result.nrPoses P = marginals.marginalCovariance(symbol('x',i)); pose_i = result.pose(symbol('x',i)); plotPose3(pose_i,P,10); end axis([-40 40 -40 40 -10 20]);axis equal view(3) colormap('hot')