%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief Read graph from file and perform GraphSLAM % @author Frank Dellaert %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Initialize graph, initial estimate, and odometry noise model = gtsamnoiseModelDiagonal.Sigmas([0.05; 0.05; 5*pi/180]); [graph,initial]=load2D('../../examples/Data/w100-odom.graph',model); initial.print(sprintf('Initial estimate:\n')); %% Add a Gaussian prior on pose x_1 priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior mean is at origin priorNoise = gtsamnoiseModelDiagonal.Sigmas([0.01; 0.01; 0.01]); graph.addPosePrior(0, priorMean, priorNoise); % add directly to graph %% Plot Initial Estimate figure(1);clf plot(initial.xs(),initial.ys(),'g-*'); axis equal %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd result = graph.optimize(initial); hold on; plot(result.xs(),result.ys(),'b-*') result.print(sprintf('\nFinal result:\n')); %% Plot Covariance Ellipses marginals = graph.marginals(result); P={}; for i=1:result.size()-1 pose_i = result.pose(i); P{i}=marginals.marginalCovariance(i); plotPose2(pose_i,'b',P{i}) end fprintf(1,'%.5f %.5f %.5f\n',P{99})