%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief Simple robotics example using the pre-built planar SLAM domain % @author Alex Cunningham % @author Frank Dellaert % @author Chris Beall %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Assumptions % - All values are axis aligned % - Robot poses are facing along the X axis (horizontal, to the right in images) % - We have full odometry for measurements % - The robot is on a grid, moving 2 meters each step %% Create graph container and add factors to it graph = pose2SLAMGraph; %% Add prior % gaussian for prior priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin priorNoise = gtsamnoiseModelDiagonal.Sigmas([0.3; 0.3; 0.1]); graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph %% Add odometry % general noisemodel for odometry odometryNoise = gtsamnoiseModelDiagonal.Sigmas([0.2; 0.2; 0.1]); graph.addRelativePose(1, 2, gtsamPose2(2.0, 0.0, 0.0 ), odometryNoise); graph.addRelativePose(2, 3, gtsamPose2(2.0, 0.0, pi/2), odometryNoise); graph.addRelativePose(3, 4, gtsamPose2(2.0, 0.0, pi/2), odometryNoise); graph.addRelativePose(4, 5, gtsamPose2(2.0, 0.0, pi/2), odometryNoise); %% Add pose constraint model = gtsamnoiseModelDiagonal.Sigmas([0.2; 0.2; 0.1]); graph.addRelativePose(5, 2, gtsamPose2(2.0, 0.0, pi/2), model); % print graph.print(sprintf('\nFactor graph:\n')); %% Initialize to noisy points initialEstimate = pose2SLAMValues; initialEstimate.insertPose(1, gtsamPose2(0.5, 0.0, 0.2 )); initialEstimate.insertPose(2, gtsamPose2(2.3, 0.1,-0.2 )); initialEstimate.insertPose(3, gtsamPose2(4.1, 0.1, pi/2)); initialEstimate.insertPose(4, gtsamPose2(4.0, 2.0, pi )); initialEstimate.insertPose(5, gtsamPose2(2.1, 2.1,-pi/2)); initialEstimate.print(sprintf('\nInitial estimate:\n')); %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd result = graph.optimize(initialEstimate,1); result.print(sprintf('\nFinal result:\n')); %% Plot Covariance Ellipses cla; X=result.poses(); plot(X(:,1),X(:,2),'k*-'); hold on plot([result.pose(5).x;result.pose(2).x],[result.pose(5).y;result.pose(2).y],'r-'); marginals = graph.marginals(result); for i=1:result.size() pose_i = result.pose(i); P = marginals.marginalCovariance(i) plotPose2(pose_i,'g',P); end axis([-0.6 4.8 -1 1]) axis equal view(2)