/** * @file PoseRTV.cpp * @author Alex Cunningham */ #include #include #include #include namespace gtsam { using namespace std; static const Vector kGravity = Vector::Unit(3,2)*9.81; /* ************************************************************************* */ double bound(double a, double min, double max) { if (a < min) return min; else if (a > max) return max; else return a; } /* ************************************************************************* */ PoseRTV::PoseRTV(double roll, double pitch, double yaw, double x, double y, double z, double vx, double vy, double vz) : Base(Pose3(Rot3::RzRyRx(roll, pitch, yaw), Point3(x, y, z)), Velocity3(vx, vy, vz)) { } /* ************************************************************************* */ PoseRTV::PoseRTV(const Vector& rtv) : Base(Pose3(Rot3::RzRyRx(rtv.head(3)), Point3(rtv.segment(3, 3))), Velocity3(rtv.tail(3))) { } /* ************************************************************************* */ Vector PoseRTV::vector() const { Vector rtv(9); rtv.head(3) = rotation().xyz(); rtv.segment(3,3) = translation(); rtv.tail(3) = velocity(); return rtv; } /* ************************************************************************* */ bool PoseRTV::equals(const PoseRTV& other, double tol) const { return pose().equals(other.pose(), tol) && equal_with_abs_tol(velocity(), other.velocity(), tol); } /* ************************************************************************* */ void PoseRTV::print(const string& s) const { cout << s << ":" << endl; gtsam::print((Vector)R().xyz(), " R:rpy"); cout << " T" << t().transpose() << endl; gtsam::print((Vector)velocity(), " V"); } /* ************************************************************************* */ PoseRTV PoseRTV::planarDynamics(double vel_rate, double heading_rate, double max_accel, double dt) const { // split out initial state const Rot3& r1 = R(); const Velocity3& v1 = v(); // Update vehicle heading Rot3 r2 = r1.retract((Vector(3) << 0.0, 0.0, heading_rate * dt).finished()); const double yaw2 = r2.ypr()(0); // Update vehicle position const double mag_v1 = v1.norm(); // FIXME: this doesn't account for direction in velocity bounds double dv = bound(vel_rate - mag_v1, - (max_accel * dt), max_accel * dt); double mag_v2 = mag_v1 + dv; Velocity3 v2 = mag_v2 * Velocity3(cos(yaw2), sin(yaw2), 0.0); Point3 t2 = translationIntegration(r2, v2, dt); return PoseRTV(r2, t2, v2); } /* ************************************************************************* */ PoseRTV PoseRTV::flyingDynamics( double pitch_rate, double heading_rate, double lift_control, double dt) const { // split out initial state const Rot3& r1 = R(); const Velocity3& v1 = v(); // Update vehicle heading (and normalise yaw) Vector rot_rates = (Vector(3) << 0.0, pitch_rate, heading_rate).finished(); Rot3 r2 = r1.retract(rot_rates*dt); // Work out dynamics on platform const double thrust = 50.0; const double lift = 50.0; const double drag = 0.1; double yaw2 = r2.yaw(); double pitch2 = r2.pitch(); double forward_accel = -thrust * sin(pitch2); // r2, pitch (in global frame?) controls forward force double loss_lift = lift*std::abs(sin(pitch2)); Rot3 yaw_correction_bn = Rot3::Yaw(yaw2); Point3 forward(forward_accel, 0.0, 0.0); Vector Acc_n = yaw_correction_bn.rotate(forward) // applies locally forward force in the global frame - drag * (Vector(3) << v1.x(), v1.y(), 0.0).finished() // drag term dependent on v1 + Vector::Unit(3,2)*(loss_lift - lift_control); // falling due to lift lost from pitch // Update Vehicle Position and Velocity Velocity3 v2 = v1 + Velocity3(Acc_n * dt); Point3 t2 = translationIntegration(r2, v2, dt); return PoseRTV(r2, t2, v2); } /* ************************************************************************* */ PoseRTV PoseRTV::generalDynamics( const Vector& accel, const Vector& gyro, double dt) const { // Integrate Attitude Equations Rot3 r2 = rotation().retract(gyro * dt); // Integrate Velocity Equations Velocity3 v2 = velocity() + Velocity3(dt * (r2.matrix() * accel + kGravity)); // Integrate Position Equations Point3 t2 = translationIntegration(r2, v2, dt); return PoseRTV(t2, r2, v2); } /* ************************************************************************* */ Vector6 PoseRTV::imuPrediction(const PoseRTV& x2, double dt) const { // split out states const Rot3 &r1 = R(), &r2 = x2.R(); const Velocity3 &v1 = v(), &v2 = x2.v(); Vector6 imu; // acceleration Vector3 accel = (v2-v1) / dt; imu.head<3>() = r2.transpose() * (accel - kGravity); // rotation rates // just using euler angles based on matlab code // FIXME: this is silly - we shouldn't use differences in Euler angles Matrix Enb = RRTMnb(r1); Vector3 euler1 = r1.xyz(), euler2 = r2.xyz(); Vector3 dR = euler2 - euler1; // normalize yaw in difference (as per Mitch's code) dR(2) = Rot2::fromAngle(dR(2)).theta(); dR /= dt; imu.tail<3>() = Enb * dR; // imu.tail(3) = r1.transpose() * dR; return imu; } /* ************************************************************************* */ Point3 PoseRTV::translationIntegration(const Rot3& r2, const Velocity3& v2, double dt) const { // predict point for constraint // NOTE: uses simple Euler approach for prediction Point3 pred_t2 = t() + Point3(v2 * dt); return pred_t2; } /* ************************************************************************* */ double PoseRTV::range(const PoseRTV& other, OptionalJacobian<1,9> H1, OptionalJacobian<1,9> H2) const { Matrix36 D_t1_pose, D_t2_other; const Point3 t1 = pose().translation(H1 ? &D_t1_pose : 0); const Point3 t2 = other.pose().translation(H2 ? &D_t2_other : 0); Matrix13 D_d_t1, D_d_t2; double d = distance3(t1, t2, H1 ? &D_d_t1 : 0, H2 ? &D_d_t2 : 0); if (H1) *H1 << D_d_t1 * D_t1_pose, 0,0,0; if (H2) *H2 << D_d_t2 * D_t2_other, 0,0,0; return d; } /* ************************************************************************* */ PoseRTV PoseRTV::transformed_from(const Pose3& trans, ChartJacobian Dglobal, OptionalJacobian<9, 6> Dtrans) const { // Pose3 transform is just compose Matrix6 D_newpose_trans, D_newpose_pose; Pose3 newpose = trans.compose(pose(), D_newpose_trans, D_newpose_pose); // Note that we rotate the velocity Matrix3 D_newvel_R, D_newvel_v; Velocity3 newvel = trans.rotation().rotate(Point3(velocity()), D_newvel_R, D_newvel_v); if (Dglobal) { Dglobal->setZero(); Dglobal->topLeftCorner<6,6>() = D_newpose_pose; Dglobal->bottomRightCorner<3,3>() = D_newvel_v; } if (Dtrans) { Dtrans->setZero(); Dtrans->topLeftCorner<6,6>() = D_newpose_trans; Dtrans->bottomLeftCorner<3,3>() = D_newvel_R; } return PoseRTV(newpose, newvel); } /* ************************************************************************* */ Matrix PoseRTV::RRTMbn(const Vector3& euler) { assert(euler.size() == 3); const double s1 = sin(euler.x()), c1 = cos(euler.x()); const double t2 = tan(euler.y()), c2 = cos(euler.y()); Matrix Ebn(3,3); Ebn << 1.0, s1 * t2, c1 * t2, 0.0, c1, -s1, 0.0, s1 / c2, c1 / c2; return Ebn; } /* ************************************************************************* */ Matrix PoseRTV::RRTMbn(const Rot3& att) { return PoseRTV::RRTMbn(att.rpy()); } /* ************************************************************************* */ Matrix PoseRTV::RRTMnb(const Vector3& euler) { Matrix Enb(3,3); const double s1 = sin(euler.x()), c1 = cos(euler.x()); const double s2 = sin(euler.y()), c2 = cos(euler.y()); Enb << 1.0, 0.0, -s2, 0.0, c1, s1*c2, 0.0, -s1, c1*c2; return Enb; } /* ************************************************************************* */ Matrix PoseRTV::RRTMnb(const Rot3& att) { return PoseRTV::RRTMnb(att.rpy()); } /* ************************************************************************* */ } // \namespace gtsam