#include #include #include #include #include #include #include #include #define GTSAM4 using namespace std; using namespace gtsam; /* ************************************************************************* */ vector createPoses() { // Create the set of ground-truth poses vector poses; double radius = 30.0, theta = 0.0; Point3 up(0, 0, 1), target(0, 0, 0); for (size_t i = 0; i < 80; ++i, theta += 2 * M_PI / 8) { Point3 position(radius * cos(theta), radius * sin(theta), 0.0); SimpleCamera camera = SimpleCamera::Lookat(position, target, up); poses.push_back(camera.pose()); } return poses; } /* ************************************************************************* */ int main(int argc, char* argv[]) { // Shorthand for velocity and pose variables using symbol_shorthand::V; using symbol_shorthand::X; // Create the set of ground-truth landmarks and poses vector poses = createPoses(); // Create a factor graph NonlinearFactorGraph newgraph, totalgraph; // Create (incremental) ISAM2 solver ISAM2 isam; // Create the initial estimate to the solution // Intentionally initialize the variables off from the ground truth Values initialEstimate, totalEstimate, result; // Add a prior on pose x0. This indirectly specifies where the origin is. // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw auto noise = noiseModel::Diagonal::Sigmas( (Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished()); newgraph.push_back(PriorFactor(X(0), poses[0], noise)); totalgraph.push_back(PriorFactor(X(0), poses[0], noise)); // Add imu priors Key biasKey = Symbol('b', 0); auto biasnoise = noiseModel::Diagonal::Sigmas(Vector6::Constant(0.1)); PriorFactor biasprior(biasKey, imuBias::ConstantBias(), biasnoise); newgraph.push_back(biasprior); totalgraph.push_back(biasprior); initialEstimate.insert(biasKey, imuBias::ConstantBias()); totalEstimate.insert(biasKey, imuBias::ConstantBias()); auto velnoise = noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.1)); Vector gravity(3), zero(3), velocity(3); gravity << 0, 0, -9.8; zero << 0, 0, 0; velocity << 0, 0, 0; #ifdef GTSAM4 PriorFactor velprior(V(0), zero, velnoise); #else PriorFactor velprior(V(0), zero, velnoise); #endif newgraph.push_back(velprior); totalgraph.push_back(velprior); #ifdef GTSAM4 initialEstimate.insert(V(0), zero); totalEstimate.insert(V(0), zero); #else initialEstimate.insert(V(0), LieVector(zero)); totalEstimate.insert(V(0), LieVector(zero)); #endif Matrix3 I; I << 1, 0, 0, 0, 1, 0, 0, 0, 1; Matrix3 accCov = I * 0.1; Matrix3 gyroCov = I * 0.1; Matrix3 intCov = I * 0.1; bool secOrder = false; #ifdef GTSAM4 // IMU preintegrator PreintegratedImuMeasurements accum(PreintegrationParams::MakeSharedD()); accum.params()->setAccelerometerCovariance(accCov); accum.params()->setGyroscopeCovariance(gyroCov); accum.params()->setIntegrationCovariance(intCov); accum.params()->setUse2ndOrderCoriolis(secOrder); accum.params()->setOmegaCoriolis(Vector3(0, 0, 0)); #else ImuFactor::PreintegratedMeasurements accum(imuBias::ConstantBias(), accCov, gyroCov, intCov, secOrder); #endif // Simulate poses and imu measurements, adding them to the factor graph for (size_t i = 0; i < poses.size(); ++i) { #ifdef GTSAM4 Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)); #else Pose3 delta(Rot3::ypr(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)); #endif if (i == 0) { // First time add two poses initialEstimate.insert(X(0), poses[0].compose(delta)); initialEstimate.insert(X(1), poses[1].compose(delta)); totalEstimate.insert(X(0), poses[0].compose(delta)); totalEstimate.insert(X(1), poses[1].compose(delta)); } else if (i >= 2) { // Add more poses as necessary initialEstimate.insert(X(i), poses[i].compose(delta)); totalEstimate.insert(X(i), poses[i].compose(delta)); } if (i > 0) { // Add Bias variables periodically if (i % 5 == 0) { biasKey++; Symbol b1 = biasKey - 1; Symbol b2 = biasKey; Vector6 covvec; covvec << 0.1, 0.1, 0.1, 0.1, 0.1, 0.1; auto cov = noiseModel::Diagonal::Variances(covvec); Vector6 zerovec; zerovec << 0, 0, 0, 0, 0, 0; auto f = boost::make_shared >( b1, b2, imuBias::ConstantBias(), cov); newgraph.add(f); totalgraph.add(f); initialEstimate.insert(biasKey, imuBias::ConstantBias()); totalEstimate.insert(biasKey, imuBias::ConstantBias()); } // Add Imu Factor accum.integrateMeasurement(gravity, zero, 0.5); #ifdef GTSAM4 ImuFactor imufac(X(i - 1), V(i - 1), X(i), V(i), biasKey, accum); #else ImuFactor imufac(X(i - 1), V(i - 1), X(i), V(i), biasKey, accum, gravity, zero); #endif newgraph.add(imufac); totalgraph.add(imufac); // insert new velocity #ifdef GTSAM4 initialEstimate.insert(V(i), velocity); totalEstimate.insert(V(i), velocity); #else initialEstimate.insert(V(i), LieVector(velocity)); totalEstimate.insert(V(i), LieVector(velocity)); #endif accum.resetIntegration(); } // Batch solution ISAM2 isam_full; isam_full.update(totalgraph, totalEstimate); result = isam_full.calculateEstimate(); // Incremental solution isam.update(newgraph, initialEstimate); result = isam.calculateEstimate(); newgraph = NonlinearFactorGraph(); initialEstimate.clear(); } return 0; } /* ************************************************************************* */