%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief Simple robotics example using the pre-built planar SLAM domain % @author Alex Cunningham % @author Frank Dellaert % @author Chris Beall % @author Vadim Indelman % @author Can Erdogan %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Assumptions % - All values are axis aligned % - Robot poses are facing along the X axis (horizontal, to the right in images) % - We have full odometry for measurements % - The robot is on a grid, moving 2 meters each step %% Create graph container and add factors to it graph = pose2SLAMGraph; %% Add prior % gaussian for prior priorNoise = gtsamSharedNoiseModel_Sigmas([0.3; 0.3; 0.1]); priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin graph.addPrior(1, priorMean, priorNoise); % add directly to graph %% Add odometry % general noisemodel for odometry odometryNoise = gtsamSharedNoiseModel_Sigmas([0.2; 0.2; 0.1]); odometry = gtsamPose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case) graph.addOdometry(1, 2, odometry, odometryNoise); graph.addOdometry(2, 3, odometry, odometryNoise); %% Add measurements % general noisemodel for measurements measurementNoise = gtsamSharedNoiseModel_Sigmas([0.1; 0.2]); % print graph.print('full graph'); %% Initialize to noisy points initialEstimate = pose2SLAMValues; initialEstimate.insertPose(1, gtsamPose2(0.5, 0.0, 0.2)); initialEstimate.insertPose(2, gtsamPose2(2.3, 0.1,-0.2)); initialEstimate.insertPose(3, gtsamPose2(4.1, 0.1, 0.1)); initialEstimate.print('initial estimate'); %% set up solver, choose ordering and optimize %params = gtsamNonlinearOptimizationParameters_newDecreaseThresholds(1e-15, 1e-15); % %ord = graph.orderingCOLAMD(initialEstimate); % %result = pose2SLAMOptimizer(graph,initialEstimate,ord,params); %result.print('final result'); %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd result = graph.optimize(initialEstimate); result.print('final result'); %% Get the corresponding dense matrix ord = graph.orderingCOLAMD(result); gfg = graph.linearize(result,ord); denseAb = gfg.denseJacobian; %% Get sparse matrix A and RHS b IJS = gfg.sparseJacobian_(); Ab=sparse(IJS(1,:),IJS(2,:),IJS(3,:)); A = Ab(:,1:end-1); b = full(Ab(:,end)); spy(A);