%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief Simple robotics example using the pre-built planar SLAM domain % @author Alex Cunningham % @author Frank Dellaert %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Assumptions % - All values are axis aligned % - Robot poses are facing along the X axis (horizontal, to the right in images) % - We have bearing and range information for measurements % - We have full odometry for measurements % - The robot and landmarks are on a grid, moving 2 meters each step % - Landmarks are 2 meters away from the robot trajectory %% Create keys for variables i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3); j1 = symbol('l',1); j2 = symbol('l',2); %% Create graph container and add factors to it graph = planarSLAMGraph; %% Add prior priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin priorNoise = gtsamSharedNoiseModel_Sigmas([0.3; 0.3; 0.1]); graph.addPrior(i1, priorMean, priorNoise); % add directly to graph %% Add odometry odometry = gtsamPose2(2.0, 0.0, 0.0); odometryNoise = gtsamSharedNoiseModel_Sigmas([0.2; 0.2; 0.1]); graph.addOdometry(i1, i2, odometry, odometryNoise); graph.addOdometry(i2, i3, odometry, odometryNoise); %% Add bearing/range measurement factors degrees = pi/180; noiseModel = gtsamSharedNoiseModel_Sigmas([0.1; 0.2]); graph.addBearingRange(i1, j1, gtsamRot2(45*degrees), sqrt(4+4), noiseModel); graph.addBearingRange(i2, j1, gtsamRot2(90*degrees), 2, noiseModel); graph.addBearingRange(i3, j2, gtsamRot2(90*degrees), 2, noiseModel); % print graph.print(sprintf('\nFull graph:\n')); %% Initialize to noisy points initialEstimate = planarSLAMValues; initialEstimate.insertPose(i1, gtsamPose2(0.5, 0.0, 0.2)); initialEstimate.insertPose(i2, gtsamPose2(2.3, 0.1,-0.2)); initialEstimate.insertPose(i3, gtsamPose2(4.1, 0.1, 0.1)); initialEstimate.insertPoint(j1, gtsamPoint2(1.8, 2.1)); initialEstimate.insertPoint(j2, gtsamPoint2(4.1, 1.8)); initialEstimate.print(sprintf('\nInitial estimate:\n')); %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd result = graph.optimize(initialEstimate); result.print(sprintf('\nFinal result:\n')); %% Plot Covariance Ellipses figure(1);clf;hold on marginals = graph.marginals(result); for i=1:3 key = symbol('x',i); pose{i} = result.pose(key); P{i}=marginals.marginalCovariance(key); if i>1 plot([pose{i-1}.x;pose{i}.x],[pose{i-1}.y;pose{i}.y],'r-'); end end for i=1:3 plotPose2(pose{i},'g',P{i}) end for j=1:2 key = symbol('l',j); point{j} = result.point(key); Q{j}=marginals.marginalCovariance(key); plotPoint2(point{j},'b',Q{j}) end plot([pose{1}.x;point{1}.x],[pose{1}.y;point{1}.y],'c-'); plot([pose{2}.x;point{1}.x],[pose{2}.y;point{1}.y],'c-'); plot([pose{3}.x;point{2}.x],[pose{3}.y;point{2}.y],'c-'); axis equal