""" GTSAM Copyright 2010-2019, Georgia Tech Research Corporation, Atlanta, Georgia 30332-0415 All Rights Reserved See LICENSE for the license information Cal3Unified unit tests. Author: Frank Dellaert & Duy Nguyen Ta (Python) """ import unittest import numpy as np import gtsam import gtsam_unstable from gtsam.utils.test_case import GtsamTestCase class TestFixedLagSmootherExample(GtsamTestCase): ''' Tests the fixed lag smoother wrapper ''' def test_FixedLagSmootherExample(self): ''' Simple test that checks for equality between C++ example file and the Python implementation. See gtsam_unstable/examples/FixedLagSmootherExample.cpp ''' # Define a batch fixed lag smoother, which uses # Levenberg-Marquardt to perform the nonlinear optimization lag = 2.0 smoother_batch = gtsam_unstable.BatchFixedLagSmoother(lag) # Create containers to store the factors and linearization points # that will be sent to the smoothers new_factors = gtsam.NonlinearFactorGraph() new_values = gtsam.Values() new_timestamps = gtsam_unstable.FixedLagSmootherKeyTimestampMap() # Create a prior on the first pose, placing it at the origin prior_mean = gtsam.Pose2(0, 0, 0) prior_noise = gtsam.noiseModel.Diagonal.Sigmas( np.array([0.3, 0.3, 0.1])) X1 = 0 new_factors.push_back( gtsam.PriorFactorPose2( X1, prior_mean, prior_noise)) new_values.insert(X1, prior_mean) new_timestamps.insert((X1, 0.0)) delta_time = 0.25 time = 0.25 i = 0 ground_truth = [ gtsam.Pose2(0.995821, 0.0231012, 0.0300001), gtsam.Pose2(1.49284, 0.0457247, 0.045), gtsam.Pose2(1.98981, 0.0758879, 0.06), gtsam.Pose2(2.48627, 0.113502, 0.075), gtsam.Pose2(2.98211, 0.158558, 0.09), gtsam.Pose2(3.47722, 0.211047, 0.105), gtsam.Pose2(3.97149, 0.270956, 0.12), gtsam.Pose2(4.4648, 0.338272, 0.135), gtsam.Pose2(4.95705, 0.41298, 0.15), gtsam.Pose2(5.44812, 0.495063, 0.165), gtsam.Pose2(5.9379, 0.584503, 0.18), ] # Iterates from 0.25s to 3.0s, adding 0.25s each loop # In each iteration, the agent moves at a constant speed # and its two odometers measure the change. The smoothed # result is then compared to the ground truth while time <= 3.0: previous_key = int(1000 * (time - delta_time)) current_key = int(1000 * time) # assign current key to the current timestamp new_timestamps.insert((current_key, time)) # Add a guess for this pose to the new values # Assume that the robot moves at 2 m/s. Position is time[s] * # 2[m/s] current_pose = gtsam.Pose2(time * 2, 0, 0) new_values.insert(current_key, current_pose) # Add odometry factors from two different sources with different # error stats odometry_measurement_1 = gtsam.Pose2(0.61, -0.08, 0.02) odometry_noise_1 = gtsam.noiseModel.Diagonal.Sigmas( np.array([0.1, 0.1, 0.05])) new_factors.push_back( gtsam.BetweenFactorPose2( previous_key, current_key, odometry_measurement_1, odometry_noise_1)) odometry_measurement_2 = gtsam.Pose2(0.47, 0.03, 0.01) odometry_noise_2 = gtsam.noiseModel.Diagonal.Sigmas( np.array([0.05, 0.05, 0.05])) new_factors.push_back( gtsam.BetweenFactorPose2( previous_key, current_key, odometry_measurement_2, odometry_noise_2)) # Update the smoothers with the new factors. In this case, # one iteration must pass for Levenberg-Marquardt to accurately # estimate if time >= 0.50: smoother_batch.update(new_factors, new_values, new_timestamps) estimate = smoother_batch.calculateEstimatePose2(current_key) self.assertTrue(estimate.equals(ground_truth[i], 1e-4)) i += 1 new_timestamps.clear() new_values.clear() new_factors.resize(0) time += delta_time if __name__ == "__main__": unittest.main()