/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file DSF.h * @date Mar 26, 2010 * @author Kai Ni * @brief An implementation of Disjoint set forests (see CLR page 446 and up) */ #pragma once #include #include #include #include #include namespace gtsam { /** * Disjoint Set Forest class * * Quoting from CLR: A disjoint-set data structure maintains a collection * S = {S_1,S_2,...} of disjoint dynamic sets. Each set is identified by * a representative, which is some member of the set. * * @ingroup base */ template class DSF: protected BTree { public: typedef DSF Self; typedef std::set Set; typedef BTree Tree; typedef std::pair KeyLabel; // constructor DSF() : Tree() { } // constructor DSF(const Tree& tree) : Tree(tree) { } // constructor with a list of unconnected keys DSF(const std::list& keys) : Tree() { for(const KEY& key: keys) *this = this->add(key, key); } // constructor with a set of unconnected keys DSF(const std::set& keys) : Tree() { for(const KEY& key: keys) *this = this->add(key, key); } // create a new singleton, does nothing if already exists Self makeSet(const KEY& key) const { if (this->mem(key)) return *this; else return this->add(key, key); } // create a new singleton, does nothing if already exists void makeSetInPlace(const KEY& key) { if (!this->mem(key)) *this = this->add(key, key); } // find the label of the set in which {key} lives KEY findSet(const KEY& key) const { KEY parent = this->find(key); return parent == key ? key : findSet(parent); } // return a new DSF where x and y are in the same set. No path compression Self makeUnion(const KEY& key1, const KEY& key2) const { DSF copy = *this; copy.makeUnionInPlace(key1,key2); return copy; } // the in-place version of makeUnion void makeUnionInPlace(const KEY& key1, const KEY& key2) { *this = this->add(findSet_(key2), findSet_(key1)); } // create a new singleton with two connected keys Self makePair(const KEY& key1, const KEY& key2) const { return makeSet(key1).makeSet(key2).makeUnion(key1, key2); } // create a new singleton with a list of fully connected keys Self makeList(const std::list& keys) const { Self t = *this; for(const KEY& key: keys) t = t.makePair(key, keys.front()); return t; } // return a dsf in which all find_set operations will be O(1) due to path compression. DSF flatten() const { DSF t = *this; for(const KeyLabel& pair: (Tree)t) t.findSet_(pair.first); return t; } // maps f over all keys, must be invertible DSF map(std::function func) const { DSF t; for(const KeyLabel& pair: (Tree)*this) t = t.add(func(pair.first), func(pair.second)); return t; } // return the number of sets size_t numSets() const { size_t num = 0; for(const KeyLabel& pair: (Tree)*this) if (pair.first == pair.second) num++; return num; } // return the numer of keys size_t size() const { return Tree::size(); } // return all sets, i.e. a partition of all elements std::map sets() const { std::map sets; for(const KeyLabel& pair: (Tree)*this) sets[findSet(pair.second)].insert(pair.first); return sets; } // return a partition of the given elements {keys} std::map partition(const std::list& keys) const { std::map partitions; for(const KEY& key: keys) partitions[findSet(key)].insert(key); return partitions; } // get the nodes in the tree with the given label Set set(const KEY& label) const { Set set; for(const KeyLabel& pair: (Tree)*this) { if (pair.second == label || findSet(pair.second) == label) set.insert(pair.first); } return set; } /** equality */ bool operator==(const Self& t) const { return (Tree) *this == (Tree) t; } /** inequality */ bool operator!=(const Self& t) const { return (Tree) *this != (Tree) t; } // print the object void print(const std::string& name = "DSF") const { std::cout << name << std::endl; for(const KeyLabel& pair: (Tree)*this) std::cout << (std::string) pair.first << " " << (std::string) pair.second << std::endl; } protected: /** * same as findSet except with path compression: After we have traversed the path to * the root, each parent pointer is made to directly point to it */ KEY findSet_(const KEY& key) { KEY parent = this->find(key); if (parent == key) return parent; else { KEY label = findSet_(parent); *this = this->add(key, label); return label; } } }; // shortcuts typedef DSF DSFInt; } // namespace gtsam