/** * @file Lie.h * @brief Base class and basic functions for Lie types * @author Richard Roberts * @author Alex Cunningham */ #pragma once #include #include namespace gtsam { /** * These core global functions can be specialized by new Lie types * for better performance. */ /* Exponential map about identity */ template T expmap(const Vector& v) { return T::Expmap(v); } /* Logmap (inverse exponential map) about identity */ template Vector logmap(const T& p) { return T::Logmap(p); } /** Compute l1 s.t. l2=l1*l0 */ template inline T between(const T& l1, const T& l2) { return compose(inverse(l1),l2); } /** Log map centered at l0, s.t. exp(l0,log(l0,lp)) = lp */ template inline Vector logmap(const T& l0, const T& lp) { return logmap(between(l0,lp)); } /** Exponential map centered at l0, s.t. exp(t,d) = t*exp(d) */ template inline T expmap(const T& t, const Vector& d) { return compose(t,expmap(d)); } /** * Base class for Lie group type * This class uses the Curiously Recurring Template design pattern to allow * for static polymorphism. * * T is the derived Lie type, like Point2, Pose3, etc. * * By convention, we use capital letters to designate a static function * * FIXME: Need to find a way to check for actual implementations in T * so that there are no recursive function calls. This could be handled * by not using the same name */ template class Lie { public: /** * Returns dimensionality of the tangent space */ inline size_t dim() const { return static_cast(this)->dim(); } /** * Returns Exponential map update of T * Default implementation calls global binary function */ T expmap(const Vector& v) const; /** expmap around identity */ static T Expmap(const Vector& v) { return T::Expmap(v); } /** * Returns Log map * Default Implementation calls global binary function */ Vector logmap(const T& lp) const; /** Logmap around identity */ static Vector Logmap(const T& p) { return T::Logmap(p); } /** compose with another object */ inline T compose(const T& p) const { return static_cast(this)->compose(p); } /** invert the object and yield a new one */ inline T inverse() const { return static_cast(this)->inverse(); } }; /** get the dimension of an object with a global function */ template inline size_t dim(const T& object) { return object.dim(); } /** compose two Lie types */ template inline T compose(const T& p1, const T& p2) { return p1.compose(p2); } /** invert an object */ template inline T inverse(const T& p) { return p.inverse(); } /** Call print on the object */ template inline void print(const T& object, const std::string& s = "") { object.print(s); } /** Call equal on the object */ template inline bool equal(const T& obj1, const T& obj2, double tol) { return obj1.equals(obj2, tol); } /** Call equal on the object without tolerance (use default tolerance) */ template inline bool equal(const T& obj1, const T& obj2) { return obj1.equals(obj2); } // The rest of the file makes double and Vector behave as a Lie type (with + as compose) // double,+ group operations inline double compose(double p1,double p2) { return p1+p2;} inline double inverse(double p) { return -p;} inline double between(double p1,double p2) { return p2-p1;} // double,+ is a trivial Lie group template<> inline double expmap(const Vector& d) { return d(0);} template<> inline double expmap(const double& p,const Vector& d) { return p+d(0);} inline Vector logmap(const double& p) { return repeat(1,p);} inline Vector logmap(const double& p1,const double& p2) { return Vector_(1,p2-p1);} // Global functions needed for double inline size_t dim(const double& v) { return 1; } // Vector group operations inline Vector compose(const Vector& p1,const Vector& p2) { return p1+p2;} inline Vector inverse(const Vector& p) { return -p;} inline Vector between(const Vector& p1,const Vector& p2) { return p2-p1;} // Vector is a trivial Lie group template<> inline Vector expmap(const Vector& d) { return d;} template<> inline Vector expmap(const Vector& p,const Vector& d) { return p+d;} inline Vector logmap(const Vector& p) { return p;} inline Vector logmap(const Vector& p1,const Vector& p2) { return p2-p1;} /** * Three term approximation of the Baker�Campbell�Hausdorff formula * In non-commutative Lie groups, when composing exp(Z) = exp(X)exp(Y) * it is not true that Z = X+Y. Instead, Z can be calculated using the BCH * formula: Z = X + Y + [X,Y]/2 + [X-Y,[X,Y]]/12 - [Y,[X,[X,Y]]]/24 * http://en.wikipedia.org/wiki/Baker�Campbell�Hausdorff_formula */ template T BCH(const T& X, const T& Y) { static const double _2 = 1. / 2., _12 = 1. / 12., _24 = 1. / 24.; T X_Y = bracket(X, Y); return X + Y + _2 * X_Y + _12 * bracket(X - Y, X_Y) - _24 * bracket(Y, bracket(X, X_Y)); } /** * Declaration of wedge (see Murray94book) used to convert * from n exponential coordinates to n*n element of the Lie algebra */ template Matrix wedge(const Vector& x); /** * Exponential map given exponential coordinates * class T needs a wedge<> function and a constructor from Matrix * @param x exponential coordinates, vector of size n * @ return a T */ template T expm(const Vector& x, int K=7) { Matrix xhat = wedge(x); return expm(xhat,K); } } // namespace gtsam