/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testNonlinearFactorGraph.cpp * @brief Unit tests for Non-Linear Factor Graph * @brief testNonlinearFactorGraph * @author Carlos Nieto * @author Christian Potthast */ /*STL/C++*/ #include using namespace std; #include using namespace boost::assign; #include #define GTSAM_MAGIC_KEY #include #include #include #include using namespace gtsam; using namespace example; /* ************************************************************************* */ TEST( Graph, equals ) { Graph fg = createNonlinearFactorGraph(); Graph fg2 = createNonlinearFactorGraph(); CHECK( fg.equals(fg2) ); } /* ************************************************************************* */ TEST( Graph, error ) { Graph fg = createNonlinearFactorGraph(); Values c1 = createValues(); double actual1 = fg.error(c1); DOUBLES_EQUAL( 0.0, actual1, 1e-9 ); Values c2 = createNoisyValues(); double actual2 = fg.error(c2); DOUBLES_EQUAL( 5.625, actual2, 1e-9 ); } /* ************************************************************************* */ TEST( Graph, GET_ORDERING) { Ordering expected; expected += "x1","l1","x2"; Graph nlfg = createNonlinearFactorGraph(); Ordering actual = *nlfg.orderingCOLAMD(createNoisyValues()); CHECK(assert_equal(expected,actual)); } /* ************************************************************************* */ TEST( Graph, probPrime ) { Graph fg = createNonlinearFactorGraph(); Values cfg = createValues(); // evaluate the probability of the factor graph double actual = fg.probPrime(cfg); double expected = 1.0; DOUBLES_EQUAL(expected,actual,0); } /* ************************************************************************* */ TEST( Graph, linearize ) { Graph fg = createNonlinearFactorGraph(); Values initial = createNoisyValues(); boost::shared_ptr linearized = fg.linearize(initial, *initial.orderingArbitrary()); GaussianFactorGraph expected = createGaussianFactorGraph(*initial.orderingArbitrary()); CHECK(assert_equal(expected,*linearized)); // Needs correct linearizations } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */