""" GTSAM Copyright 2010-2018, Georgia Tech Research Corporation, Atlanta, Georgia 30332-0415 All Rights Reserved Authors: Frank Dellaert, et al. (see THANKS for the full author list) See LICENSE for the license information Kinematics of three-link manipulator with GTSAM poses and product of exponential maps. Author: Frank Dellaert """ # pylint: disable=invalid-name, E1101 from __future__ import print_function import math import unittest from functools import reduce import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D # pylint: disable=W0611 import gtsam import gtsam.utils.plot as gtsam_plot from gtsam import Pose2 def vector3(x, y, z): """Create 3D double numpy array.""" return np.array([x, y, z], dtype=np.float) def compose(*poses): """Compose all Pose2 transforms given as arguments from left to right.""" return reduce((lambda x, y: x.compose(y)), poses) def vee(M): """Pose2 vee operator.""" return vector3(M[0, 2], M[1, 2], M[1, 0]) def delta(g0, g1): """Difference between x,y,,theta components of SE(2) poses.""" return vector3(g1.x() - g0.x(), g1.y() - g0.y(), g1.theta() - g0.theta()) def trajectory(g0, g1, N=20): """ Create an interpolated trajectory in SE(2), treating x,y, and theta separately. g0 and g1 are the initial and final pose, respectively. N is the number of *intervals* Returns N+1 poses """ e = delta(g0, g1) return [Pose2(g0.x()+e[0]*t, g0.y()+e[1]*t, g0.theta()+e[2]*t) for t in np.linspace(0, 1, N)] class ThreeLinkArm(object): """Three-link arm class.""" def __init__(self): self.L1 = 3.5 self.L2 = 3.5 self.L3 = 2.5 self.xi1 = vector3(0, 0, 1) self.xi2 = vector3(self.L1, 0, 1) self.xi3 = vector3(self.L1+self.L2, 0, 1) self.sXt0 = Pose2(0, self.L1+self.L2 + self.L3, math.radians(90)) def fk(self, q): """ Forward kinematics. Takes numpy array of joint angles, in radians. """ sXl1 = Pose2(0, 0, math.radians(90)) l1Zl1 = Pose2(0, 0, q[0]) l1Xl2 = Pose2(self.L1, 0, 0) l2Zl2 = Pose2(0, 0, q[1]) l2Xl3 = Pose2(self.L2, 0, 0) l3Zl3 = Pose2(0, 0, q[2]) l3Xt = Pose2(self.L3, 0, 0) return compose(sXl1, l1Zl1, l1Xl2, l2Zl2, l2Xl3, l3Zl3, l3Xt) def jacobian(self, q): """ Calculate manipulator Jacobian. Takes numpy array of joint angles, in radians. """ a = q[0]+q[1] b = a+q[2] return np.array([[-self.L1*math.cos(q[0]) - self.L2*math.cos(a)-self.L3*math.cos(b), -self.L1*math.cos(a)-self.L3*math.cos(b), - self.L3*math.cos(b)], [-self.L1*math.sin(q[0]) - self.L2*math.sin(a)-self.L3*math.sin(b), -self.L1*math.sin(a)-self.L3*math.sin(b), - self.L3*math.sin(b)], [1, 1, 1]], np.float) def poe(self, q): """ Forward kinematics. Takes numpy array of joint angles, in radians. """ l1Zl1 = Pose2.Expmap(self.xi1 * q[0]) l2Zl2 = Pose2.Expmap(self.xi2 * q[1]) l3Zl3 = Pose2.Expmap(self.xi3 * q[2]) return compose(l1Zl1, l2Zl2, l3Zl3, self.sXt0) def con(self, q): """ Forward kinematics, conjugation form. Takes numpy array of joint angles, in radians. """ def expmap(x, y, theta): """Implement exponential map via conjugation with axis (x,y).""" return compose(Pose2(x, y, 0), Pose2(0, 0, theta), Pose2(-x, -y, 0)) l1Zl1 = expmap(0.0, 0.0, q[0]) l2Zl2 = expmap(0.0, self.L1, q[1]) l3Zl3 = expmap(0.0, 7.0, q[2]) return compose(l1Zl1, l2Zl2, l3Zl3, self.sXt0) def ik(self, sTt_desired, e=1e-9): """ Inverse kinematics. Takes desired Pose2 of tool T with respect to base S. Optional: mu, gradient descent rate; e: error norm threshold """ q = np.radians(vector3(30, -30, 45)) # well within workspace error = vector3(100, 100, 100) while np.linalg.norm(error) > e: error = delta(sTt_desired, self.fk(q)) J = self.jacobian(q) q -= np.dot(np.linalg.pinv(J), error) # return result in interval [-pi,pi) return np.remainder(q+math.pi, 2*math.pi)-math.pi def manipulator_jacobian(self, q): """ Calculate manipulator Jacobian. Takes numpy array of joint angles, in radians. Returns the manipulator Jacobian of differential twists. When multiplied with a vector of joint velocities, will yield a single differential twist which is the spatial velocity d(sTt)/dt * inv(sTt) of the end-effector pose. Just like always, differential twists can be hatted and multiplied with spatial coordinates of a point to give the spatial velocity of the point. """ l1Zl1 = Pose2.Expmap(self.xi1 * q[0]) l2Zl2 = Pose2.Expmap(self.xi2 * q[1]) # l3Zl3 = Pose2.Expmap(self.xi3 * q[2]) p1 = self.xi1 # p1 = Pose2().Adjoint(self.xi1) sTl1 = l1Zl1 p2 = sTl1.Adjoint(self.xi2) sTl2 = compose(l1Zl1, l2Zl2) p3 = sTl2.Adjoint(self.xi3) differential_twists = [p1, p2, p3] return np.stack(differential_twists, axis=1) def plot(self, fignum, q): """ Plot arm. Takes figure number, and numpy array of joint angles, in radians. """ fig = plt.figure(fignum) axes = fig.gca() sXl1 = Pose2(0, 0, math.radians(90)) t = sXl1.translation() p1 = np.array([t.x(), t.y()]) gtsam_plot.plot_pose2_on_axes(axes, sXl1) def plot_line(p, g, color): t = g.translation() q = np.array([t.x(), t.y()]) line = np.append(p[np.newaxis], q[np.newaxis], axis=0) axes.plot(line[:, 0], line[:, 1], color) return q l1Zl1 = Pose2(0, 0, q[0]) l1Xl2 = Pose2(self.L1, 0, 0) sTl2 = compose(sXl1, l1Zl1, l1Xl2) p2 = plot_line(p1, sTl2, 'r-') gtsam_plot.plot_pose2_on_axes(axes, sTl2) l2Zl2 = Pose2(0, 0, q[1]) l2Xl3 = Pose2(self.L2, 0, 0) sTl3 = compose(sTl2, l2Zl2, l2Xl3) p3 = plot_line(p2, sTl3, 'g-') gtsam_plot.plot_pose2_on_axes(axes, sTl3) l3Zl3 = Pose2(0, 0, q[2]) l3Xt = Pose2(self.L3, 0, 0) sTt = compose(sTl3, l3Zl3, l3Xt) plot_line(p3, sTt, 'b-') gtsam_plot.plot_pose2_on_axes(axes, sTt) # Create common example configurations. Q0 = vector3(0, 0, 0) Q1 = np.radians(vector3(-30, -45, -90)) Q2 = np.radians(vector3(-90, 90, 0)) class TestPose2SLAMExample(unittest.TestCase): """Unit tests for functions used below.""" def setUp(self): self.arm = ThreeLinkArm() def assertPose2Equals(self, actual, expected, tol=1e-2): """Helper function that prints out actual and expected if not equal.""" equal = actual.equals(expected, tol) if not equal: raise self.failureException( "Poses are not equal:\n{}!={}".format(actual, expected)) def test_fk_arm(self): """Make sure forward kinematics is correct for some known test configurations.""" # at rest expected = Pose2(0, 2*3.5 + 2.5, math.radians(90)) sTt = self.arm.fk(Q0) self.assertIsInstance(sTt, Pose2) self.assertPose2Equals(sTt, expected) # -30, -45, -90 expected = Pose2(5.78, 1.52, math.radians(-75)) sTt = self.arm.fk(Q1) self.assertPose2Equals(sTt, expected) def test_jacobian(self): """Test Jacobian calculation.""" # at rest expected = np.array([[-9.5, -6, -2.5], [0, 0, 0], [1, 1, 1]], np.float) J = self.arm.jacobian(Q0) np.testing.assert_array_almost_equal(J, expected) # at -90, 90, 0 expected = np.array([[-6, -6, -2.5], [3.5, 0, 0], [1, 1, 1]], np.float) J = self.arm.jacobian(Q2) np.testing.assert_array_almost_equal(J, expected) def test_con_arm(self): """Make sure POE is correct for some known test configurations.""" # at rest expected = Pose2(0, 2*3.5 + 2.5, math.radians(90)) sTt = self.arm.con(Q0) self.assertIsInstance(sTt, Pose2) self.assertPose2Equals(sTt, expected) # -30, -45, -90 expected = Pose2(5.78, 1.52, math.radians(-75)) sTt = self.arm.con(Q1) self.assertPose2Equals(sTt, expected) def test_poe_arm(self): """Make sure POE is correct for some known test configurations.""" # at rest expected = Pose2(0, 2*3.5 + 2.5, math.radians(90)) sTt = self.arm.poe(Q0) self.assertIsInstance(sTt, Pose2) self.assertPose2Equals(sTt, expected) # -30, -45, -90 expected = Pose2(5.78, 1.52, math.radians(-75)) sTt = self.arm.poe(Q1) self.assertPose2Equals(sTt, expected) def test_ik(self): """Check iterative inverse kinematics function.""" # at rest actual = self.arm.ik(Pose2(0, 2*3.5 + 2.5, math.radians(90))) np.testing.assert_array_almost_equal(actual, Q0, decimal=2) # -30, -45, -90 sTt_desired = Pose2(5.78, 1.52, math.radians(-75)) actual = self.arm.ik(sTt_desired) self.assertPose2Equals(self.arm.fk(actual), sTt_desired) np.testing.assert_array_almost_equal(actual, Q1, decimal=2) def test_manipulator_jacobian(self): """Test Jacobian calculation.""" # at rest expected = np.array([[0, 3.5, 7], [0, 0, 0], [1, 1, 1]], np.float) J = self.arm.manipulator_jacobian(Q0) np.testing.assert_array_almost_equal(J, expected) # at -90, 90, 0 expected = np.array( [[0, 0, 3.5], [0, -3.5, -3.5], [1, 1, 1]], np.float) J = self.arm.manipulator_jacobian(Q2) np.testing.assert_array_almost_equal(J, expected) def run_example(): """ Use trajectory interpolation and then trajectory tracking a la Murray to move a 3-link arm on a straight line. """ arm = ThreeLinkArm() q = np.radians(vector3(30, -30, 45)) sTt_initial = arm.fk(q) sTt_goal = Pose2(2.4, 4.3, math.radians(0)) poses = trajectory(sTt_initial, sTt_goal, 50) fignum = 0 fig = plt.figure(fignum) axes = fig.gca() axes.set_xlim(-5, 5) axes.set_ylim(0, 10) gtsam_plot.plot_pose2(fignum, arm.fk(q)) for pose in poses: sTt = arm.fk(q) error = delta(sTt, pose) J = arm.jacobian(q) q += np.dot(np.linalg.inv(J), error) arm.plot(fignum, q) plt.pause(0.01) plt.pause(10) if __name__ == "__main__": run_example() unittest.main()