/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file ProjectionFactor.h * @brief Basic bearing factor from 2D measurement * @author Chris Beall * @author Luca Carlone * @author Zsolt Kira */ #pragma once #include #include #include #include #include #include #include #include namespace gtsam { // default threshold for selective relinearization static double defaultLinThreshold = -1; // 1e-7; // 0.01 // default threshold for retriangulation static double defaultTriangThreshold = 1e-7; /** * Structure for storing some state memory, used to speed up optimization * @addtogroup SLAM */ class SmartProjectionFactorState { public: static int lastID; int ID; SmartProjectionFactorState() { ID = lastID++; calculatedHessian = false; } // Linearization point Values values; std::vector cameraPosesLinearization; // Triangulation at current linearization point Point3 point; std::vector cameraPosesTriangulation; bool degenerate; bool cheiralityException; // Overall reprojection error double overallError; std::vector cameraPosesError; // Hessian representation (after Schur complement) bool calculatedHessian; Matrix H; Vector gs_vector; std::vector Gs; std::vector gs; double f; // C = Hl'Hl // Cinv = inv(Hl'Hl) // Matrix3 Cinv; // E = Hx'Hl // w = Hl'b }; int SmartProjectionFactorState::lastID = 0; /** * The calibration is known here. * @addtogroup SLAM */ template class SmartProjectionFactor: public NonlinearFactor { protected: // Keep a copy of measurement and calibration for I/O std::vector measured_; ///< 2D measurement for each of the m views const SharedNoiseModel noise_; ///< noise model used ///< (important that the order is the same as the keys that we use to create the factor) boost::shared_ptr K_; ///< shared pointer to calibration object double retriangulationThreshold; ///< threshold to decide whether to re-triangulate double linearizationThreshold; ///< threshold to decide whether to re-linearize boost::optional body_P_sensor_; ///< The pose of the sensor in the body frame boost::shared_ptr state_; // verbosity handling for Cheirality Exceptions bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false) bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false) public: /// shorthand for base class type typedef NonlinearFactor Base; /// shorthand for this class typedef SmartProjectionFactor This; /// shorthand for a smart pointer to a factor typedef boost::shared_ptr shared_ptr; /// shorthand for smart projection factor state variable typedef boost::shared_ptr SmartFactorStatePtr; /// Default constructor SmartProjectionFactor() : throwCheirality_(false), verboseCheirality_(false) {} /** * Constructor * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark * @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements) * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views) * @param K shared pointer to the constant calibration * @param body_P_sensor is the transform from body to sensor frame (default identity) */ SmartProjectionFactor(std::vector poseKeys, // camera poses const std::vector measured, // pixel measurements const SharedNoiseModel& model, // noise model (same for all measurements) const boost::shared_ptr& K, // calibration matrix (same for all measurements) boost::optional body_P_sensor = boost::none, SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) : measured_(measured), noise_(model), K_(K), retriangulationThreshold(defaultTriangThreshold), linearizationThreshold(defaultLinThreshold), body_P_sensor_(body_P_sensor), state_(state), throwCheirality_(false), verboseCheirality_(false) { keys_.assign(poseKeys.begin(), poseKeys.end()); } /** * Constructor * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark * @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements) * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views) * @param K shared pointer to the constant calibration * @param body_P_sensor is the transform from body to sensor frame (default identity) */ SmartProjectionFactor(std::vector poseKeys, // camera poses const std::vector measured, // pixel measurements const SharedNoiseModel& model, // noise model (same for all measurements) const boost::shared_ptr& K, // calibration matrix (same for all measurements) const double linThreshold, boost::optional body_P_sensor = boost::none, SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) : measured_(measured), noise_(model), K_(K), retriangulationThreshold(defaultTriangThreshold), linearizationThreshold(linThreshold), body_P_sensor_(body_P_sensor), state_(state), throwCheirality_(false), verboseCheirality_(false) { keys_.assign(poseKeys.begin(), poseKeys.end()); } /** * Constructor with exception-handling flags * TODO: Mark argument order standard (keys, measurement, parameters) * @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements) * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views) * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark * @param K shared pointer to the constant calibration * @param throwCheirality determines whether Cheirality exceptions are rethrown * @param verboseCheirality determines whether exceptions are printed for Cheirality * @param body_P_sensor is the transform from body to sensor frame (default identity) */ SmartProjectionFactor(std::vector poseKeys, const std::vector measured, const SharedNoiseModel& model, const boost::shared_ptr& K, bool throwCheirality, bool verboseCheirality, boost::optional body_P_sensor = boost::none, SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) : measured_(measured), noise_(model), K_(K), retriangulationThreshold(defaultTriangThreshold), linearizationThreshold(defaultLinThreshold), body_P_sensor_(body_P_sensor), state_(state), throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) { } /** * Constructor with exception-handling flags * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views) * @param K shared pointer to the constant calibration */ SmartProjectionFactor(const SharedNoiseModel& model, const boost::shared_ptr& K, boost::optional body_P_sensor = boost::none, SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) : noise_(model), K_(K), retriangulationThreshold(defaultTriangThreshold), linearizationThreshold(defaultLinThreshold), body_P_sensor_(body_P_sensor), state_(state) { } /** Virtual destructor */ virtual ~SmartProjectionFactor() {} /** * add a new measurement and pose key * @param measured is the 2m dimensional location of the projection of a single landmark in the m view (the measurement) * @param poseKey is the index corresponding to the camera observing the same landmark */ void add(const Point2 measured, const Key poseKey) { measured_.push_back(measured); keys_.push_back(poseKey); } // This function checks if the new linearization point is the same as the one used for previous triangulation // (if not, a new triangulation is needed) static bool decideIfTriangulate(std::vector cameraPoses, std::vector oldPoses, double retriangulationThreshold) { // several calls to linearize will be done from the same linearization point, hence it is not needed to re-triangulate // Note that this is not yet "selecting linearization", that will come later, and we only check if the // current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point // if we do not have a previous linearization point or the new linearization point includes more poses if(oldPoses.empty() || (cameraPoses.size() != oldPoses.size())) return true; for(size_t i = 0; i < cameraPoses.size(); i++) { if (!cameraPoses[i].equals(oldPoses[i], retriangulationThreshold)) { return true; // at least two poses are different, hence we retriangulate } } return false; // if we arrive to this point all poses are the same and we don't need re-triangulation } // This function checks if the new linearization point is 'close' to the previous one used for linearization // (if not, a new linearization is needed) static bool decideIfLinearize(std::vector cameraPoses, std::vector oldPoses, double linearizationThreshold) { // "selective linearization" // The function evaluates how close are the old and the new poses, transformed in the ref frame of the first pose // (we only care about the "rigidity" of the poses, not about their absolute pose) // if we do not have a previous linearization point or the new linearization point includes more poses if(oldPoses.empty() || (cameraPoses.size() != oldPoses.size())) return true; Pose3 firstCameraPose; Pose3 firstCameraPoseOld; for(size_t i = 0; i < cameraPoses.size(); i++) { if(i==0){ // we store the initial pose, this is useful for selective re-linearization firstCameraPose = cameraPoses[i]; firstCameraPoseOld = oldPoses[i]; continue; } // we compare the poses in the frame of the first pose Pose3 localCameraPose = firstCameraPose.between(cameraPoses[i]); Pose3 localCameraPoseOld = firstCameraPoseOld.between(oldPoses[i]); if (!cameraPoses[i].equals(oldPoses[i], linearizationThreshold)) { return true; // at least two "relative" poses are different, hence we re-linerize } } return false; // if we arrive to this point all poses are the same and we don't need re-linerize } /** * print * @param s optional string naming the factor * @param keyFormatter optional formatter useful for printing Symbols */ void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const { std::cout << s << "SmartProjectionFactor, z = "; BOOST_FOREACH(const Point2& p, measured_) { std::cout << "measurement, p = "<< p << std::endl; } if(this->body_P_sensor_) this->body_P_sensor_->print(" sensor pose in body frame: "); Base::print("", keyFormatter); } /// equals virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const { const This *e = dynamic_cast(&p); bool areMeasurementsEqual = true; for(size_t i = 0; i < measured_.size(); i++) { if(this->measured_.at(i).equals(e->measured_.at(i), tol) == false) areMeasurementsEqual = false; break; } return e && Base::equals(p, tol) && areMeasurementsEqual && this->K_->equals(*e->K_, tol) && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_))); } /// get the dimension of the factor (number of rows on linearization) virtual size_t dim() const { return 6*keys_.size(); } /// linearize returns a Hessianfactor that is an approximation of error(p) virtual boost::shared_ptr linearize(const Values& values) const { bool blockwise = false; // the full matrix version in faster int dim_landmark = 3; // for degenerate instances this will become 2 (direction-only information) // Create structures for Hessian Factors unsigned int numKeys = keys_.size(); std::vector js; std::vector Gs(numKeys*(numKeys+1)/2); std::vector gs(numKeys); double f=0; // Collect all poses (Cameras) std::vector cameraPoses; BOOST_FOREACH(const Key& k, keys_) { Pose3 cameraPose; if(body_P_sensor_) { cameraPose = values.at(k).compose(*body_P_sensor_);} else { cameraPose = values.at(k);} cameraPoses.push_back(cameraPose); } bool retriangulate = decideIfTriangulate(cameraPoses, state_->cameraPosesTriangulation, retriangulationThreshold); if(retriangulate) {// we store the current poses used for triangulation state_->cameraPosesTriangulation = cameraPoses; } if (retriangulate) { // We triangulate the 3D position of the landmark try { Point3 newPoint = triangulatePoint3(cameraPoses, measured_, *K_); // changeLinPoint = newPoint - state_->point; // TODO: implement this check for the degenerate case state_->point = newPoint; state_->degenerate = false; state_->cheiralityException = false; } catch( TriangulationUnderconstrainedException& e) { // point is triangulated at infinity //std::cout << "Triangulation failed " << e.what() << std::endl; BOOST_FOREACH(gtsam::Matrix& m, Gs) m = zeros(6, 6); BOOST_FOREACH(Vector& v, gs) v = zero(6); state_->degenerate = true; state_->cheiralityException = false; dim_landmark = 2; return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f)); // TODO: Debug condition, uncomment when fixed } catch( TriangulationCheiralityException& e) { // point is behind one of the cameras, turn factor off by setting everything to 0 //std::cout << e.what() << std::end; BOOST_FOREACH(gtsam::Matrix& m, Gs) m = zeros(6, 6); BOOST_FOREACH(Vector& v, gs) v = zero(6); state_->cheiralityException = true; // TODO: Debug condition, uncomment when fixed return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f)); // TODO: Debug condition, uncomment when fixed // TODO: this is a debug condition, should be removed the comment } } // state_->degenerate = true; // TODO: this is a debug condition, should be removed // dim_landmark = 2; // TODO: this is a debug condition, should be removed the comment if (!retriangulate && state_->cheiralityException) { BOOST_FOREACH(gtsam::Matrix& m, Gs) m = zeros(6, 6); BOOST_FOREACH(Vector& v, gs) v = zero(6); return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f)); } if (!retriangulate && state_->degenerate) { dim_landmark = 2; } bool doLinearize; if (linearizationThreshold >= 0){//by convention if linearizationThreshold is negative we always relinearize std::cout << "Temporary disabled" << std::endl; doLinearize = decideIfLinearize(cameraPoses, state_->cameraPosesLinearization, linearizationThreshold); } else{ doLinearize = true; } if (doLinearize) { state_->cameraPosesLinearization = cameraPoses; } if(!doLinearize){ // return the previous Hessian factor return HessianFactor::shared_ptr(new HessianFactor(keys_, state_->Gs, state_->gs, state_->f)); } //otherwise redo linearization if (blockwise){ // ========================================================================================================== std::cout << "Deprecated use of blockwise version. This is slower and no longer supported" << std::endl; blockwise = false; // std::vector Hx(numKeys); // std::vector Hl(numKeys); // std::vector b(numKeys); // // for(size_t i = 0; i < measured_.size(); i++) { // Pose3 pose = cameraPoses.at(i); // PinholeCamera camera(pose, *K_); // b.at(i) = - ( camera.project(state_->point,Hx.at(i),Hl.at(i)) - measured_.at(i) ).vector(); // noise_-> WhitenSystem(Hx.at(i), Hl.at(i), b.at(i)); // f += b.at(i).squaredNorm(); // } // // // Shur complement trick // // // Allocate m^2 matrix blocks // std::vector< std::vector > Hxl(keys_.size(), std::vector( keys_.size())); // // // Allocate inv(Hl'Hl) // Matrix3 C = zeros(3,3); // for(size_t i1 = 0; i1 < keys_.size(); i1++) { // C.noalias() += Hl.at(i1).transpose() * Hl.at(i1); // } // // Matrix3 Cinv = C.inverse(); // this is very important: without eval, because of eigen aliasing the results will be incorrect // // // Calculate sub blocks // for(size_t i1 = 0; i1 < keys_.size(); i1++) { // for(size_t i2 = 0; i2 < keys_.size(); i2++) { // // we only need the upper triangular entries // Hxl[i1][i2].noalias() = Hx.at(i1).transpose() * Hl.at(i1) * Cinv * Hl.at(i2).transpose(); // } // } // // Populate Gs and gs // int GsCount = 0; // for(size_t i1 = 0; i1 < numKeys; i1++) { // gs.at(i1).noalias() = Hx.at(i1).transpose() * b.at(i1); // // for(size_t i2 = 0; i2 < numKeys; i2++) { // gs.at(i1).noalias() -= Hxl[i1][i2] * b.at(i2); // // if (i2 == i1){ // Gs.at(GsCount).noalias() = Hx.at(i1).transpose() * Hx.at(i1) - Hxl[i1][i2] * Hx.at(i2); // GsCount++; // } // if (i2 > i1) { // Gs.at(GsCount).noalias() = - Hxl[i1][i2] * Hx.at(i2); // GsCount++; // } // } // } } if (blockwise == false){ // version with full matrix multiplication // ========================================================================================================== Matrix Hx2 = zeros(2 * numKeys, 6 * numKeys); Matrix Hl2 = zeros(2 * numKeys, dim_landmark); Vector b2 = zero(2 * numKeys); if(state_->degenerate){ for(size_t i = 0; i < measured_.size(); i++) { Pose3 pose = cameraPoses.at(i); PinholeCamera camera(pose, *K_); if(i==0){ // first pose state_->point = camera.backprojectPointAtInfinity(measured_.at(i)); // 3D parametrization of point at infinity // std::cout << "point_ " << state_->point<< std::endl; } Matrix Hxi, Hli; Vector bi = -( camera.projectPointAtInfinity(state_->point,Hxi,Hli) - measured_.at(i) ).vector(); // std::cout << "Hxi \n" << Hxi<< std::endl; // std::cout << "Hli \n" << Hli<< std::endl; noise_-> WhitenSystem(Hxi, Hli, bi); f += bi.squaredNorm(); Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi; Hl2.block( 2*i, 0, 2, 2 ) = Hli; subInsert(b2,bi,2*i); } // std::cout << "Hx2 \n" << Hx2<< std::endl; // std::cout << "Hl2 \n" << Hl2<< std::endl; } else{ for(size_t i = 0; i < measured_.size(); i++) { Pose3 pose = cameraPoses.at(i); PinholeCamera camera(pose, *K_); Matrix Hxi, Hli; Vector bi; try { bi = -( camera.project(state_->point,Hxi,Hli) - measured_.at(i) ).vector(); } catch ( CheiralityException& e) { std::cout << "Cheirality exception " << state_->ID << std::endl; exit(EXIT_FAILURE); } noise_-> WhitenSystem(Hxi, Hli, bi); f += bi.squaredNorm(); Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi; Hl2.block( 2*i, 0, 2, 3 ) = Hli; subInsert(b2,bi,2*i); } } // Shur complement trick Matrix H(6 * numKeys, 6 * numKeys); Matrix C2; Vector gs_vector; C2.noalias() = (Hl2.transpose() * Hl2).inverse(); H.noalias() = Hx2.transpose() * (Hx2 - (Hl2 * (C2 * (Hl2.transpose() * Hx2)))); gs_vector.noalias() = Hx2.transpose() * (b2 - (Hl2 * (C2 * (Hl2.transpose() * b2)))); // Populate Gs and gs int GsCount2 = 0; for(size_t i1 = 0; i1 < numKeys; i1++) { gs.at(i1) = sub(gs_vector, 6*i1, 6*i1 + 6); for(size_t i2 = 0; i2 < numKeys; i2++) { if (i2 >= i1) { Gs.at(GsCount2) = H.block(6*i1, 6*i2, 6, 6); GsCount2++; } } } } // ========================================================================================================== // if(linearizationThreshold >= 0){ // if we do not use selective relinearization we don't need to store these variables // state_->calculatedHessian = true; // state_->Gs = Gs; // state_->gs = gs; // state_->f = f; // } return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f)); } /** * Calculate the error of the factor. * This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian. * In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model * to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5. */ virtual double error(const Values& values) const { if (this->active(values)) { double overallError=0; // Collect all poses (Cameras) std::vector cameraPoses; BOOST_FOREACH(const Key& k, keys_) { Pose3 cameraPose; if(body_P_sensor_) { cameraPose = values.at(k).compose(*body_P_sensor_);} else { cameraPose = values.at(k);} cameraPoses.push_back(cameraPose); } bool retriangulate = decideIfTriangulate(cameraPoses, state_->cameraPosesTriangulation, retriangulationThreshold); if(retriangulate) {// we store the current poses used for triangulation state_->cameraPosesTriangulation = cameraPoses; } // We triangulate the 3D position of the landmark if (retriangulate) { try { state_->point = triangulatePoint3(cameraPoses, measured_, *K_); state_->degenerate = false; state_->cheiralityException = false; } catch( TriangulationCheiralityException& e) { // std::cout << "TriangulationCheiralityException " << std::endl; // point is behind one of the cameras, turn factor off by setting everything to 0 //std::cout << e.what() << std::end; state_->cheiralityException = true; // TODO: Debug condition, remove comment return 0.0; // TODO: this is a debug condition, should be removed the comment } catch( TriangulationUnderconstrainedException& e) { // point is triangulated at infinity //std::cout << e.what() << std::endl; state_->degenerate = true; state_->cheiralityException = false; } } // state_->degenerate = true; // TODO: this is a debug condition, should be removed if (!retriangulate && state_->cheiralityException) { return 0.0; } if(state_->degenerate){ for(size_t i = 0; i < measured_.size(); i++) { Pose3 pose = cameraPoses.at(i); PinholeCamera camera(pose, *K_); if(i==0){ // first pose state_->point = camera.backprojectPointAtInfinity(measured_.at(i)); // 3D parametrization of point at infinity } Point2 reprojectionError(camera.projectPointAtInfinity(state_->point) - measured_.at(i)); overallError += 0.5 * noise_->distance( reprojectionError.vector() ); //overallError += reprojectionError.vector().norm(); } return overallError; } else{ for(size_t i = 0; i < measured_.size(); i++) { Pose3 pose = cameraPoses.at(i); PinholeCamera camera(pose, *K_); try { Point2 reprojectionError(camera.project(state_->point) - measured_.at(i)); //std::cout << "Reprojection error: " << reprojectionError << std::endl; overallError += 0.5 * noise_->distance( reprojectionError.vector() ); //overallError += reprojectionError.vector().norm(); } catch ( CheiralityException& e) { std::cout << "Cheirality exception " << state_->ID << std::endl; exit(EXIT_FAILURE); } } return overallError; } } else { // else of active flag return 0.0; } } /** return the measurements */ const Vector& measured() const { return measured_; } /** return the noise model */ const SharedNoiseModel& noise() const { return noise_; } /** return the landmark */ boost::optional point() const { return state_->point; } /** return the calibration object */ inline const boost::shared_ptr calibration() const { return K_; } /** return verbosity */ inline bool verboseCheirality() const { return verboseCheirality_; } /** return flag for throwing cheirality exceptions */ inline bool throwCheirality() const { return throwCheirality_; } private: /// Serialization function friend class boost::serialization::access; template void serialize(ARCHIVE & ar, const unsigned int version) { ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base); ar & BOOST_SERIALIZATION_NVP(measured_); ar & BOOST_SERIALIZATION_NVP(K_); ar & BOOST_SERIALIZATION_NVP(body_P_sensor_); ar & BOOST_SERIALIZATION_NVP(throwCheirality_); ar & BOOST_SERIALIZATION_NVP(verboseCheirality_); } }; } // \ namespace gtsam