/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file PlanarSLAMExample.cpp * @brief Simple robotics example using the pre-built planar SLAM domain * @author Alex Cunningham */ // pull in the planar SLAM domain with all typedefs and helper functions defined #include // we will use Symbol keys #include using namespace std; using namespace gtsam; using namespace gtsam::noiseModel; /** * Example of a simple 2D planar slam example with landmarls * - The robot and landmarks are on a 2 meter grid * - Robot poses are facing along the X axis (horizontal, to the right in 2D) * - The robot moves 2 meters each step * - We have full odometry between poses * - We have bearing and range information for measurements * - Landmarks are 2 meters away from the robot trajectory */ int main(int argc, char** argv) { // create the graph (defined in planarSlam.h, derived from NonlinearFactorGraph) planarSLAM::Graph graph; // Create some keys static Symbol i1('x',1), i2('x',2), i3('x',3); static Symbol j1('l',1), j2('l',2); // add a Gaussian prior on pose x_1 Pose2 priorMean(0.0, 0.0, 0.0); // prior mean is at origin SharedDiagonal priorNoise = Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta graph.addPosePrior(i1, priorMean, priorNoise); // add directly to graph // add two odometry factors Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case) SharedDiagonal odometryNoise = Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta graph.addRelativePose(i1, i2, odometry, odometryNoise); graph.addRelativePose(i2, i3, odometry, odometryNoise); // create a noise model for the landmark measurements SharedDiagonal measurementNoise = Diagonal::Sigmas(Vector_(2, 0.1, 0.2)); // 0.1 rad std on bearing, 20cm on range // create the measurement values - indices are (pose id, landmark id) Rot2 bearing11 = Rot2::fromDegrees(45), bearing21 = Rot2::fromDegrees(90), bearing32 = Rot2::fromDegrees(90); double range11 = std::sqrt(4.0+4.0), range21 = 2.0, range32 = 2.0; // add bearing/range factors (created by "addBearingRange") graph.addBearingRange(i1, j1, bearing11, range11, measurementNoise); graph.addBearingRange(i2, j1, bearing21, range21, measurementNoise); graph.addBearingRange(i3, j2, bearing32, range32, measurementNoise); // print graph.print("Factor graph"); // create (deliberatly inaccurate) initial estimate planarSLAM::Values initialEstimate; initialEstimate.insertPose(i1, Pose2(0.5, 0.0, 0.2)); initialEstimate.insertPose(i2, Pose2(2.3, 0.1,-0.2)); initialEstimate.insertPose(i3, Pose2(4.1, 0.1, 0.1)); initialEstimate.insertPoint(j1, Point2(1.8, 2.1)); initialEstimate.insertPoint(j2, Point2(4.1, 1.8)); initialEstimate.print("Initial estimate:\n "); // optimize using Levenberg-Marquardt optimization with an ordering from colamd planarSLAM::Values result = graph.optimize(initialEstimate); result.print("Final result:\n "); return 0; }