import gtsam.*; % Test GTSAM covariances on a graph with betweenFactors % Authors: Luca Carlone, David Jensen % Date: 2014/4/6 clc clear all close all %% Create ground truth trajectory trajectoryLength = 49; unsmooth_DP = 0.5; % controls smoothness on translation norm unsmooth_DR = 0.1; % controls smoothness on translation norm % possibly create random trajectory as ground Truth gtValues = Values; gtGraph = NonlinearFactorGraph; sigma_ang = 1e-2; sigma_cart = 0.1; noiseVector = [sigma_ang; sigma_ang; sigma_ang; sigma_cart; sigma_cart; sigma_cart]; noise = noiseModel.Diagonal.Sigmas(noiseVector); currentPoseKey = symbol('x', 0); currentPose = Pose3; % initial pose gtValues.insert(currentPoseKey, currentPose); gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noise)); for i=1:trajectoryLength currentPoseKey = symbol('x', i); gtDeltaPosition = unsmooth_DP*randn(3,1) + [20;0;0]; % create random vector with mean = [1 0 0] and sigma = 0.5 gtDeltaRotation = unsmooth_DR*randn(3,1) + [0;0;0]; % create random rotation with mean [0 0 0] and sigma = 0.1 (rad) gtDeltaMatrix(i,:) = [gtDeltaRotation; gtDeltaPosition]; deltaPose = Pose3.Expmap(gtDeltaMatrix(i,:)'); % "Deduce" ground truth measurements % deltaPose are the gt measurements - save them in some structure currentPose = currentPose.compose(deltaPose); gtValues.insert(currentPoseKey, currentPose); % Add the factors to the factor graph gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, deltaPose, noise)); end figure(1) hold on; plot3DTrajectory(gtValues, '-r', [], 1, Marginals(gtGraph, gtValues)); axis equal numMonteCarloRuns = 100; for k=1:numMonteCarloRuns % create a new graph graph = NonlinearFactorGraph; % noisy prior currentPoseKey = symbol('x', 0); noisyDelta = noiseVector .* randn(6,1); initialPose = Pose3.Expmap(noisyDelta); graph.add(PriorFactorPose3(currentPoseKey, initialPose, noise)); for i=1:trajectoryLength currentPoseKey = symbol('x', i); % for each measurement: add noise and add to graph noisyDelta = gtDeltaMatrix(i,:)' + (noiseVector .* randn(6,1)); noisyDeltaPose = Pose3.Expmap(noisyDelta); % Add the factors to the factor graph graph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, noisyDeltaPose, noise)); end % optimize optimizer = GaussNewtonOptimizer(graph, gtValues); estimate = optimizer.optimize(); figure(1) plot3DTrajectory(estimate, '-b'); marginals = Marginals(graph, estimate); % for each pose in the trajectory for i=1:trajectoryLength+1 % compute estimation errors currentPoseKey = symbol('x', i-1); gtPosition = gtValues.at(currentPoseKey).translation.vector; estPosition = estimate.at(currentPoseKey).translation.vector; errPosition = estPosition - gtPosition; % compute covariances: cov = marginals.marginalCovariance(currentPoseKey); covPosition = cov(4:6,4:6); % compute NEES using (estimationError = estimatedValues - gtValues) and estimated covariances NEES(k,i) = errPosition' * inv(covPosition) * errPosition; % distributed according to a Chi square with n = 3 dof end figure(2) hold on plot(NEES(k,:),'-b','LineWidth',1.5) end %% ANEES = mean(NEES); plot(ANEES,'-r','LineWidth',2) plot(3*ones(size(ANEES,2),1),'k--'); % Expectation(ANEES) = number of dof box on set(gca,'Fontsize',16) title('NEES and ANEES'); %% figure(1) box on set(gca,'Fontsize',16) title('Ground truth and estimates for each MC runs'); %% Let us compute statistics on the overall NEES n = 3; % position vector dimension N = numMonteCarloRuns; % number of runs alpha = 0.01; % confidence level % mean_value = n*N; % mean value of the Chi-square distribution % (we divide by n * N and for this reason we expect ANEES around 1) r1 = chi2inv(alpha, n * N) / (n * N); r2 = chi2inv(1-alpha, n * N) / (n * N); % output here fprintf(1, 'r1 = %g\n', r1); fprintf(1, 'r2 = %g\n', r2); figure(3) hold on plot(ANEES/n,'-b','LineWidth',2) plot(ones(size(ANEES,2),1),'r-'); plot(r1*ones(size(ANEES,2),1),'k-.'); plot(r2*ones(size(ANEES,2),1),'k-.'); box on set(gca,'Fontsize',16) title('NEES normalized by dof VS bounds'); %% NEES COMPUTATION (Bar-Shalom 2001, Section 5.4) % the nees for a single experiment (i) is defined as % NEES_i = xtilda' * inv(P) * xtilda, % where xtilda in R^n is the estimation % error, and P is the covariance estimated by the approach we want to test % % Average NEES. Given N Monte Carlo simulations, i=1,...,N, the average % NEES is: % ANEES = sum(NEES_i)/N % The quantity N*ANEES is distributed according to a Chi-square % distribution with N*n degrees of freedom. % % For the single run case, N=1, therefore NEES = ANEES is distributed % according to a chi-square distribution with n degrees of freedom (e.g. n=3 % if we are testing a position estimate) % Therefore its mean should be n (difficult to see from a single run) % and, with probability alpha, it should hold: % % NEES in [r1, r2] % % where r1 and r2 are built from the Chi-square distribution