/* * iterative-inl.h * @brief Iterative methods, template implementation * @author Frank Dellaert * Created on: Dec 28, 2009 */ #pragma once #include #include using namespace std; namespace gtsam { /* ************************************************************************* */ // state for CG method template struct CGState { bool steepest, verbose; double gamma, threshold; size_t k, maxIterations, reset; V g, d; E Ad; /* ************************************************************************* */ // Constructor CGState(const S& Ab, const V& x, bool verb, double epsilon, double epsilon_abs, size_t maxIt, bool steep) { k = 0; verbose = verb; steepest = steep; maxIterations = (maxIt > 0) ? maxIt : x.dim() * (steepest ? 10 : 1); reset = (size_t) (sqrt(x.dim()) + 0.5); // when to reset // Start with g0 = A'*(A*x0-b), d0 = - g0 // i.e., first step is in direction of negative gradient g = Ab.gradient(x); d = g; // instead of negating gradient, alpha will be negated // init gamma and calculate threshold gamma = dot(g,g) ; threshold = ::max(epsilon_abs, epsilon * epsilon * gamma); // Allocate and calculate A*d for first iteration if (gamma > epsilon) Ad = Ab * d; } /* ************************************************************************* */ // print void print(const V& x) { cout << "iteration = " << k << endl; gtsam::print(x,"x"); gtsam::print(g, "g"); cout << "dotg = " << gamma << endl; gtsam::print(d, "d"); gtsam::print(Ad, "Ad"); } /* ************************************************************************* */ // step the solution double takeOptimalStep(V& x) { // TODO: can we use gamma instead of dot(d,g) ????? Answer not trivial double alpha = -dot(d, g) / dot(Ad, Ad); // calculate optimal step-size axpy(alpha, d, x); // // do step in new search direction, x += alpha*d return alpha; } /* ************************************************************************* */ // take a step, return true if converged bool step(const S& Ab, V& x) { k += 1; // increase iteration number double alpha = takeOptimalStep(x); if (k >= maxIterations) return true; //----------------------------------> // update gradient (or re-calculate at reset time) if (k % reset == 0) g = Ab.gradient(x); else // axpy(alpha, Ab ^ Ad, g); // g += alpha*(Ab^Ad) Ab.transposeMultiplyAdd(alpha, Ad, g); // check for convergence double new_gamma = dot(g, g); if (verbose) cout << "iteration " << k << ": alpha = " << alpha << ", dotg = " << new_gamma << endl; if (new_gamma < threshold) return true; //----------------------------------> // calculate new search direction if (steepest) d = g; else { double beta = new_gamma / gamma; // d = g + d*beta; scal(beta, d); axpy(1.0, g, d); } gamma = new_gamma; // In-place recalculation Ad <- A*d to avoid re-allocating Ad Ab.multiplyInPlace(d, Ad); return false; } }; // CGState Class /* ************************************************************************* */ // conjugate gradient method. // S: linear system, V: step vector, E: errors template V conjugateGradients(const S& Ab, V x, bool verbose, double epsilon, double epsilon_abs, size_t maxIterations, bool steepest = false) { CGState state(Ab, x, verbose, epsilon, epsilon_abs, maxIterations,steepest); if (verbose) cout << "CG: epsilon = " << epsilon << ", maxIterations = " << state.maxIterations << ", ||g0||^2 = " << state.gamma << ", threshold = " << state.threshold << endl; if (state.gamma < state.threshold) { if (verbose) cout << "||g0||^2 < threshold, exiting immediately !" << endl; return x; } // loop maxIterations times while (!state.step(Ab, x)) ; return x; } /* ************************************************************************* */ } // namespace gtsam