%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief A simple visual SLAM example for structure from motion % @author Duy-Nguyen Ta %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Assumptions % - Landmarks as 8 vertices of a cube: (10,10,10) (-10,10,10) etc... % - Cameras are on a circle around the cube, pointing at the world origin % - Each camera sees all landmarks. % - Visual measurements as 2D points are given, corrupted by Gaussian noise. %% Generate simulated data % 3D landmarks as vertices of a cube points = {gtsamPoint3([10 10 10]'),... gtsamPoint3([-10 10 10]'),... gtsamPoint3([-10 -10 10]'),... gtsamPoint3([10 -10 10]'),... gtsamPoint3([10 10 -10]'),... gtsamPoint3([-10 10 -10]'),... gtsamPoint3([-10 -10 -10]'),... gtsamPoint3([10 -10 -10]')}; % Camera cameras on a circle around the cube, pointing at the world origin nCameras = 6; height = 0; r = 30; cameras = {}; K = gtsamCal3_S2(500,500,0,640/2,480/2); for i=1:nCameras theta = (i-1)*2*pi/nCameras; t = gtsamPoint3([r*cos(theta), r*sin(theta), height]'); cameras{i} = gtsamSimpleCamera_lookat(t, gtsamPoint3, gtsamPoint3([0,0,1]'), K); end measurementNoiseSigma = 1.0; pointNoiseSigma = 0.1; poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]'; %% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph) graph = visualSLAMGraph; %% Add factors for all measurements measurementNoise = gtsamSharedNoiseModel_Sigma(2,measurementNoiseSigma); for i=1:nCameras for j=1:size(points,2) zij = cameras{i}.project(points{j}); % you can add noise here if desired graph.addMeasurement(zij, measurementNoise, symbol('x',i), symbol('l',j), K); end end %% Add Gaussian priors for a pose and a landmark to constrain the system posePriorNoise = gtsamSharedNoiseModel_Sigmas(poseNoiseSigmas); graph.addPosePrior(symbol('x',1), cameras{1}.pose, posePriorNoise); pointPriorNoise = gtsamSharedNoiseModel_Sigma(3,pointNoiseSigma); graph.addPointPrior(symbol('l',1), points{1}, pointPriorNoise); %% Print the graph graph.print(sprintf('\nFactor graph:\n')); %% Initialize to noisy cameras and points initialEstimate = visualSLAMValues; for i=1:size(cameras,2) initialEstimate.insertPose(symbol('x',i), cameras{i}.pose); end for j=1:size(points,2) initialEstimate.insertPoint(symbol('l',j), points{j}); end initialEstimate.print(sprintf('\nInitial estimate:\n ')); %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd result = graph.optimize(initialEstimate); result.print(sprintf('\nFinal result:\n ')); %% Plot results with covariance ellipses marginals = graph.marginals(result); figure(1);clf hold on; for j=1:size(points,2) P = marginals.marginalCovariance(symbol('l',j)); point_j = result.point(symbol('l',j)); plot3(point_j.x, point_j.y, point_j.z,'marker','o'); covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P); end for i=1:size(cameras,2) P = marginals.marginalCovariance(symbol('x',i)) pose_i = result.pose(symbol('x',i)) plotPose3(pose_i,P,10); end axis([-35 35 -35 35 -15 15]); axis equal view(-37,40)