/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file RollingShutterProjectionFactor.h * @brief Basic bearing factor from 2D measurement for rolling shutter cameras * @author Yotam Stern */ #pragma once #include #include #include namespace gtsam { /** * Non-linear factor for a constraint derived from a 2D measurement. The calibration is known here. * i.e. the main building block for visual SLAM. * this version takes rolling shutter information into account like so: consider camera A (pose A) and camera B, and Point2 from camera A. * camera A has timestamp t_A for the exposure time of its first row, and so does camera B t_B, Point2 has timestamp t_p according to the timestamp * corresponding to the time of exposure of the row in the camera it belongs to. * let us define the interp_param = (t_p - t_A) / (t_B - t_A), we will use the pose interpolated between A and B by the interp_param to project * the corresponding landmark to Point2. * @addtogroup SLAM */ class RollingShutterProjectionFactor: public NoiseModelFactor3 { protected: // Keep a copy of measurement and calibration for I/O Point2 measured_; ///< 2D measurement double interp_param_; ///< interpolation parameter corresponding to the point2 measured boost::shared_ptr K_; ///< shared pointer to calibration object boost::optional body_P_sensor_; ///< The pose of the sensor in the body frame // verbosity handling for Cheirality Exceptions bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false) bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false) public: /// shorthand for base class type typedef NoiseModelFactor3 Base; /// shorthand for this class typedef RollingShutterProjectionFactor This; /// shorthand for a smart pointer to a factor typedef boost::shared_ptr shared_ptr; /// Default constructor RollingShutterProjectionFactor() : measured_(0, 0), interp_param_(0), throwCheirality_(false), verboseCheirality_(false) { } /** * Constructor * @param measured is the 2 dimensional location of point in image (the measurement) * @param interp_param is the rolling shutter parameter for the measurement * @param model is the standard deviation * @param poseKey_a is the index of the first camera * @param poseKey_b is the index of the second camera * @param pointKey is the index of the landmark * @param K shared pointer to the constant calibration * @param body_P_sensor is the transform from body to sensor frame (default identity) */ RollingShutterProjectionFactor(const Point2& measured, double interp_param, const SharedNoiseModel& model, Key poseKey_a, Key poseKey_b, Key pointKey, const boost::shared_ptr& K, boost::optional body_P_sensor = boost::none) : Base(model, poseKey_a, poseKey_b, pointKey), measured_(measured), interp_param_(interp_param), K_(K), body_P_sensor_(body_P_sensor), throwCheirality_(false), verboseCheirality_(false) {} /** * Constructor with exception-handling flags * @param measured is the 2 dimensional location of point in image (the measurement) * @param interp_param is the rolling shutter parameter for the measurement * @param model is the standard deviation * @param poseKey_a is the index of the first camera * @param poseKey_b is the index of the second camera * @param pointKey is the index of the landmark * @param K shared pointer to the constant calibration * @param throwCheirality determines whether Cheirality exceptions are rethrown * @param verboseCheirality determines whether exceptions are printed for Cheirality * @param body_P_sensor is the transform from body to sensor frame (default identity) */ RollingShutterProjectionFactor(const Point2& measured, double interp_param, const SharedNoiseModel& model, Key poseKey_a, Key poseKey_b, Key pointKey, const boost::shared_ptr& K, bool throwCheirality, bool verboseCheirality, boost::optional body_P_sensor = boost::none) : Base(model, poseKey_a, poseKey_b, pointKey), measured_(measured), interp_param_(interp_param), K_(K), body_P_sensor_(body_P_sensor), throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {} /** Virtual destructor */ virtual ~RollingShutterProjectionFactor() {} /// @return a deep copy of this factor virtual gtsam::NonlinearFactor::shared_ptr clone() const { return boost::static_pointer_cast( gtsam::NonlinearFactor::shared_ptr(new This(*this))); } /** * print * @param s optional string naming the factor * @param keyFormatter optional formatter useful for printing Symbols */ void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const { std::cout << s << "RollingShutterProjectionFactor, z = "; traits::Print(measured_); std::cout << " rolling shutter interpolation param = " << interp_param_; if(this->body_P_sensor_) this->body_P_sensor_->print(" sensor pose in body frame: "); Base::print("", keyFormatter); } /// equals virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const { const This *e = dynamic_cast(&p); return e && Base::equals(p, tol) && (interp_param_ == e->interp_param()) && traits::Equals(this->measured_, e->measured_, tol) && this->K_->equals(*e->K_, tol) && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_))); } /// Evaluate error h(x)-z and optionally derivatives Vector evaluateError(const Pose3& pose_a, const Pose3& pose_b, const Point3& point, boost::optional H1 = boost::none, boost::optional H2 = boost::none, boost::optional H3 = boost::none) const { Pose3 pose; gtsam::Matrix Hprj; //pose = interpolate(pose_a, pose_b, interp_param_, H1, H2); pose = pose_a.interp(interp_param_, pose_b, H1, H2); try { if(body_P_sensor_) { if(H1 && H2) { gtsam::Matrix H0; PinholeCamera camera(pose.compose(*body_P_sensor_, H0), *K_); Point2 reprojectionError(camera.project(point, Hprj, H3, boost::none) - measured_); *H1 = Hprj * H0 * (*H1); *H2 = Hprj * H0 * (*H2); return reprojectionError; } else { PinholeCamera camera(pose.compose(*body_P_sensor_), *K_); return camera.project(point, Hprj, H3, boost::none) - measured_; } } else { PinholeCamera camera(pose, *K_); Point2 reprojectionError(camera.project(point, Hprj, H3, boost::none) - measured_); if (H1) *H1 = Hprj * (*H1); if (H2) *H2 = Hprj * (*H2); return reprojectionError; } } catch( CheiralityException& e) { if (H1) *H1 = Matrix::Zero(2,6); if (H2) *H2 = Matrix::Zero(2,6); if (H3) *H3 = Matrix::Zero(2,3); if (verboseCheirality_) std::cout << e.what() << ": Landmark "<< DefaultKeyFormatter(this->key2()) << " moved behind camera " << DefaultKeyFormatter(this->key1()) << std::endl; if (throwCheirality_) throw CheiralityException(this->key2()); } return Vector2::Constant(2.0 * K_->fx()); } /** return the measurement */ const Point2& measured() const { return measured_; } /** return the calibration object */ inline const boost::shared_ptr calibration() const { return K_; } /** returns the rolling shutter interp param*/ inline double interp_param() const {return interp_param_; } /** return verbosity */ inline bool verboseCheirality() const { return verboseCheirality_; } /** return flag for throwing cheirality exceptions */ inline bool throwCheirality() const { return throwCheirality_; } private: /// Serialization function friend class boost::serialization::access; template void serialize(ARCHIVE & ar, const unsigned int /*version*/) { ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base); ar & BOOST_SERIALIZATION_NVP(measured_); ar & BOOST_SERIALIZATION_NVP(interp_param_); ar & BOOST_SERIALIZATION_NVP(K_); ar & BOOST_SERIALIZATION_NVP(body_P_sensor_); ar & BOOST_SERIALIZATION_NVP(throwCheirality_); ar & BOOST_SERIALIZATION_NVP(verboseCheirality_); } public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW }; // rolling shutter projection factor } //namespace gtsam