/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testExpressionFactor.cpp * @date September 18, 2014 * @author Frank Dellaert * @author Paul Furgale * @brief unit tests for Block Automatic Differentiation */ #include #include #include #include #include #include #include #include #include #include using boost::assign::list_of; using namespace std; using namespace gtsam; Point2 measured(-17, 30); SharedNoiseModel model = noiseModel::Unit::Create(2); namespace leaf { // Create some values struct MyValues: public Values { MyValues() { insert(2, Point2(3, 5)); } } values; // Create leaf Point2_ p(2); } /* ************************************************************************* */ // Leaf TEST(ExpressionFactor, Leaf) { using namespace leaf; // Create old-style factor to create expected value and derivatives PriorFactor old(2, Point2(0, 0), model); // Concise version ExpressionFactor f(model, Point2(0, 0), p); EXPECT_DOUBLES_EQUAL(old.error(values), f.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f.dim()); boost::shared_ptr gf2 = f.linearize(values); EXPECT( assert_equal(*old.linearize(values), *gf2, 1e-9)); } /* ************************************************************************* */ // non-zero noise model TEST(ExpressionFactor, Model) { using namespace leaf; SharedNoiseModel model = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.01)); // Create old-style factor to create expected value and derivatives PriorFactor old(2, Point2(0, 0), model); // Concise version ExpressionFactor f(model, Point2(0, 0), p); EXPECT_DOUBLES_EQUAL(old.error(values), f.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f.dim()); boost::shared_ptr gf2 = f.linearize(values); EXPECT( assert_equal(*old.linearize(values), *gf2, 1e-9)); } /* ************************************************************************* */ // Constrained noise model TEST(ExpressionFactor, Constrained) { using namespace leaf; SharedDiagonal model = noiseModel::Constrained::MixedSigmas(Vector2(0.2, 0)); // Create old-style factor to create expected value and derivatives PriorFactor old(2, Point2(0, 0), model); // Concise version ExpressionFactor f(model, Point2(0, 0), p); EXPECT_DOUBLES_EQUAL(old.error(values), f.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f.dim()); boost::shared_ptr gf2 = f.linearize(values); EXPECT( assert_equal(*old.linearize(values), *gf2, 1e-9)); } /* ************************************************************************* */ // Unary(Leaf)) TEST(ExpressionFactor, Unary) { // Create some values Values values; values.insert(2, Point3(0, 0, 1)); JacobianFactor expected( // 2, (Matrix(2, 3) << 1, 0, 0, 0, 1, 0), // (Vector(2) << -17, 30)); // Create leaves Point3_ p(2); // Concise version ExpressionFactor f(model, measured, project(p)); EXPECT_LONGS_EQUAL(2, f.dim()); boost::shared_ptr gf = f.linearize(values); boost::shared_ptr jf = // boost::dynamic_pointer_cast(gf); EXPECT( assert_equal(expected, *jf, 1e-9)); } /* ************************************************************************* */ static Point2 myUncal(const Cal3_S2& K, const Point2& p, boost::optional Dcal, boost::optional Dp) { return K.uncalibrate(p, Dcal, Dp); } // Binary(Leaf,Leaf) TEST(ExpressionFactor, Binary) { typedef BinaryExpression Binary; Cal3_S2_ K_(1); Point2_ p_(2); Binary binary(myUncal, K_, p_); // Create some values Values values; values.insert(1, Cal3_S2()); values.insert(2, Point2(0, 0)); // traceRaw will fill raw with [Trace | Binary::Record] EXPECT_LONGS_EQUAL(8, sizeof(double)); EXPECT_LONGS_EQUAL(24, sizeof(Point2)); EXPECT_LONGS_EQUAL(48, sizeof(Cal3_S2)); EXPECT_LONGS_EQUAL(16, sizeof(ExecutionTrace)); EXPECT_LONGS_EQUAL(16, sizeof(ExecutionTrace)); EXPECT_LONGS_EQUAL(2*5*8, sizeof(Jacobian::type)); EXPECT_LONGS_EQUAL(2*2*8, sizeof(Jacobian::type)); size_t expectedRecordSize = 24 + 24 + 48 + 2 * 16 + 80 + 32; EXPECT_LONGS_EQUAL(expectedRecordSize, sizeof(Binary::Record)); // Check size size_t size = binary.traceSize(); CHECK(size); EXPECT_LONGS_EQUAL(expectedRecordSize, size); // Use Variable Length Array, allocated on stack by gcc // Note unclear for Clang: http://clang.llvm.org/compatibility.html#vla char raw[size]; ExecutionTrace trace; Point2 value = binary.traceExecution(values, trace, raw); // trace.print(); // Expected Jacobians Matrix25 expected25; expected25 << 0, 0, 0, 1, 0, 0, 0, 0, 0, 1; Matrix2 expected22; expected22 << 1, 0, 0, 1; // Check matrices boost::optional r = trace.record(); CHECK(r); EXPECT( assert_equal(expected25, (Matrix) (*r)-> jacobian(), 1e-9)); EXPECT( assert_equal(expected22, (Matrix) (*r)->jacobian(), 1e-9)); } /* ************************************************************************* */ // Unary(Binary(Leaf,Leaf)) TEST(ExpressionFactor, Shallow) { // Create some values Values values; values.insert(1, Pose3()); values.insert(2, Point3(0, 0, 1)); // Create old-style factor to create expected value and derivatives GenericProjectionFactor old(measured, model, 1, 2, boost::make_shared()); double expected_error = old.error(values); GaussianFactor::shared_ptr expected = old.linearize(values); // Create leaves Pose3_ x_(1); Point3_ p_(2); // Construct expression, concise evrsion Point2_ expression = project(transform_to(x_, p_)); // traceExecution of shallow tree typedef UnaryExpression Unary; typedef BinaryExpression Binary; size_t expectedTraceSize = sizeof(Unary::Record) + sizeof(Binary::Record); EXPECT_LONGS_EQUAL(112, sizeof(Unary::Record)); #ifdef GTSAM_USE_QUATERNIONS EXPECT_LONGS_EQUAL(464, sizeof(Binary::Record)); LONGS_EQUAL(112+464, expectedTraceSize); #else EXPECT_LONGS_EQUAL(432, sizeof(Binary::Record)); LONGS_EQUAL(112+432, expectedTraceSize); #endif size_t size = expression.traceSize(); CHECK(size); EXPECT_LONGS_EQUAL(expectedTraceSize, size); char raw[size]; ExecutionTrace trace; Point2 value = expression.traceExecution(values, trace, raw); // trace.print(); // Expected Jacobians Matrix23 expected23; expected23 << 1, 0, 0, 0, 1, 0; // Check matrices boost::optional r = trace.record(); CHECK(r); EXPECT(assert_equal(expected23, (Matrix)(*r)->jacobian(), 1e-9)); // Linearization ExpressionFactor f2(model, measured, expression); EXPECT_DOUBLES_EQUAL(expected_error, f2.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f2.dim()); boost::shared_ptr gf2 = f2.linearize(values); EXPECT( assert_equal(*expected, *gf2, 1e-9)); } /* ************************************************************************* */ // Binary(Leaf,Unary(Binary(Leaf,Leaf))) TEST(ExpressionFactor, tree) { // Create some values Values values; values.insert(1, Pose3()); values.insert(2, Point3(0, 0, 1)); values.insert(3, Cal3_S2()); // Create old-style factor to create expected value and derivatives GeneralSFMFactor2 old(measured, model, 1, 2, 3); double expected_error = old.error(values); GaussianFactor::shared_ptr expected = old.linearize(values); // Create leaves Pose3_ x(1); Point3_ p(2); Cal3_S2_ K(3); // Create expression tree Point3_ p_cam(x, &Pose3::transform_to, p); Point2_ xy_hat(PinholeCamera::project_to_camera, p_cam); Point2_ uv_hat(K, &Cal3_S2::uncalibrate, xy_hat); // Create factor and check value, dimension, linearization ExpressionFactor f(model, measured, uv_hat); EXPECT_DOUBLES_EQUAL(expected_error, f.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f.dim()); boost::shared_ptr gf = f.linearize(values); EXPECT( assert_equal(*expected, *gf, 1e-9)); // Concise version ExpressionFactor f2(model, measured, uncalibrate(K, project(transform_to(x, p)))); EXPECT_DOUBLES_EQUAL(expected_error, f2.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f2.dim()); boost::shared_ptr gf2 = f2.linearize(values); EXPECT( assert_equal(*expected, *gf2, 1e-9)); TernaryExpression::Function fff = project6; // Try ternary version ExpressionFactor f3(model, measured, project3(x, p, K)); EXPECT_DOUBLES_EQUAL(expected_error, f3.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f3.dim()); boost::shared_ptr gf3 = f3.linearize(values); EXPECT( assert_equal(*expected, *gf3, 1e-9)); } /* ************************************************************************* */ TEST(ExpressionFactor, Compose1) { // Create expression Rot3_ R1(1), R2(2); Rot3_ R3 = R1 * R2; // Create factor ExpressionFactor f(noiseModel::Unit::Create(3), Rot3(), R3); // Create some values Values values; values.insert(1, Rot3()); values.insert(2, Rot3()); // Check unwhitenedError std::vector H(2); Vector actual = f.unwhitenedError(values, H); EXPECT( assert_equal(eye(3), H[0],1e-9)); EXPECT( assert_equal(eye(3), H[1],1e-9)); // Check linearization JacobianFactor expected(1, eye(3), 2, eye(3), zero(3)); boost::shared_ptr gf = f.linearize(values); boost::shared_ptr jf = // boost::dynamic_pointer_cast(gf); EXPECT( assert_equal(expected, *jf,1e-9)); } /* ************************************************************************* */ // Test compose with arguments referring to the same rotation TEST(ExpressionFactor, compose2) { // Create expression Rot3_ R1(1), R2(1); Rot3_ R3 = R1 * R2; // Create factor ExpressionFactor f(noiseModel::Unit::Create(3), Rot3(), R3); // Create some values Values values; values.insert(1, Rot3()); // Check unwhitenedError std::vector H(1); Vector actual = f.unwhitenedError(values, H); EXPECT_LONGS_EQUAL(1, H.size()); EXPECT( assert_equal(2*eye(3), H[0],1e-9)); // Check linearization JacobianFactor expected(1, 2 * eye(3), zero(3)); boost::shared_ptr gf = f.linearize(values); boost::shared_ptr jf = // boost::dynamic_pointer_cast(gf); EXPECT( assert_equal(expected, *jf,1e-9)); } /* ************************************************************************* */ // Test compose with one arguments referring to a constant same rotation TEST(ExpressionFactor, compose3) { // Create expression Rot3_ R1(Rot3::identity()), R2(3); Rot3_ R3 = R1 * R2; // Create factor ExpressionFactor f(noiseModel::Unit::Create(3), Rot3(), R3); // Create some values Values values; values.insert(3, Rot3()); // Check unwhitenedError std::vector H(1); Vector actual = f.unwhitenedError(values, H); EXPECT_LONGS_EQUAL(1, H.size()); EXPECT( assert_equal(eye(3), H[0],1e-9)); // Check linearization JacobianFactor expected(3, eye(3), zero(3)); boost::shared_ptr gf = f.linearize(values); boost::shared_ptr jf = // boost::dynamic_pointer_cast(gf); EXPECT( assert_equal(expected, *jf,1e-9)); } /* ************************************************************************* */ // Test compose with three arguments Rot3 composeThree(const Rot3& R1, const Rot3& R2, const Rot3& R3, boost::optional H1, boost::optional H2, boost::optional H3) { // return dummy derivatives (not correct, but that's ok for testing here) if (H1) *H1 = eye(3); if (H2) *H2 = eye(3); if (H3) *H3 = eye(3); return R1 * (R2 * R3); } TEST(ExpressionFactor, composeTernary) { // Create expression Rot3_ A(1), B(2), C(3); Rot3_ ABC(composeThree, A, B, C); // Create factor ExpressionFactor f(noiseModel::Unit::Create(3), Rot3(), ABC); // Create some values Values values; values.insert(1, Rot3()); values.insert(2, Rot3()); values.insert(3, Rot3()); // Check unwhitenedError std::vector H(3); Vector actual = f.unwhitenedError(values, H); EXPECT_LONGS_EQUAL(3, H.size()); EXPECT( assert_equal(eye(3), H[0],1e-9)); EXPECT( assert_equal(eye(3), H[1],1e-9)); EXPECT( assert_equal(eye(3), H[2],1e-9)); // Check linearization JacobianFactor expected(1, eye(3), 2, eye(3), 3, eye(3), zero(3)); boost::shared_ptr gf = f.linearize(values); boost::shared_ptr jf = // boost::dynamic_pointer_cast(gf); EXPECT( assert_equal(expected, *jf,1e-9)); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */