/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testSimilarity3.cpp * @brief Unit tests for Similarity3 class */ #include #include #include namespace gtsam { /** * 3D similarity transform */ class Similarity3: public LieGroup { /** Pose Concept requirements */ typedef Rot3 Rotation; typedef Point3 Translation; private: Rot3 R_; Point3 t_; double s_; public: /// Construct from Eigen types Similarity3(const Matrix3& R, const Vector3& t, double s) { R_ = R; t_ = t; s_ = s; } /// Return the translation const Vector3 t() const { return t_.vector(); } /// Return the rotation matrix const Matrix3 R() const { return R_.matrix(); } public: Similarity3() : R_(), t_(), s_(1){ } /// Construct pure scaling Similarity3(double s) { s_ = s; } /// Construct from GTSAM types Similarity3(const Rot3& R, const Point3& t, double s) { R_ = R; t_ = t; s_ = s; } bool operator==(const Similarity3& other) const { return (R_.equals(other.R_)) && (t_ == other.t_) && (s_ == other.s_); } /// Compare with tolerance bool equals(const Similarity3& sim, double tol) const { return rotation().equals(sim.rotation(), tol) && translation().equals(sim.translation(), tol) && scale() < (sim.scale()+tol) && scale() > (sim.scale()-tol); } Point3 transform_from(const Point3& p) const { /*if (Dpose) { const Matrix3 R = R_.matrix(); Matrix3 DR = R * skewSymmetric(-p.x(), -p.y(), -p.z()); (*Dpose) << DR, R; } if (Dpoint) *Dpoint = R_.matrix();*/ return R_ * (s_ * p) + t_; } Matrix7 adjointMap() const{ const Matrix3 R = R_.matrix(); const Vector3 t = t_.vector(); Matrix3 A = s_ * skewSymmetric(t) * R; Matrix7 adj; adj << s_*R, A, -s_*t, Z_3x3, R, Eigen::Matrix::Zero(), Z_3x3, Z_3x3, 1; } /** syntactic sugar for transform_from */ inline Point3 operator*(const Point3& p) const { return transform_from(p); } /*Similarity3 inverse() const { Rot3 Rt = R_.inverse(); return Pose3(Rt, Rt * (-t_)); }*/ Similarity3 operator*(const Similarity3& T) const { return Similarity3(R_ * T.R_, ((1.0/s_)*t_) + R_ * T.t_, s_*T.s_); } void print(const std::string& s) const { std::cout << s; rotation().print("R:\n"); translation().print("t: "); std::cout << "s: " << scale() << std::endl; } /// @name Manifold /// @{ /// Dimensionality of tangent space = 7 DOF - used to autodetect sizes inline static size_t Dim() { return 7; } /// Dimensionality of tangent space = 7 DOF inline size_t dim() const { return 7; } /// Return the rotation matrix Rot3 rotation() const { return R_; } /// Return the translation Point3 translation() const { return t_; } /// Return the scale double scale() const { return s_; } /// Update Similarity transform via 7-dim vector in tangent space /* Similarity3 retract(const Vector7& v) const { // Will retracting or localCoordinating R work if R is not a unit rotation? // Also, how do we actually get s out? Seems like we need to store it somewhere. return Similarity3( // R_.retract(v.head<3>()), // retract rotation using v[0,1,2] t_.retract(R() * v.segment<3>(3)), // Retract the translation scale() + v[6]); //finally, update scale using v[6] } /// 7-dimensional vector v in tangent space that makes other = this->retract(v) Vector7 localCoordinates(const Similarity3& other) const { Vector7 v; v.head<3>() = R_.localCoordinates(other.R_); v.segment<3>(3) = R_.unrotate(other.t_ - t_).vector(); //v.segment<3>(3) = translation().localCoordinates(other.translation()); v[6] = other.s_ - s_; return v; }*/ /// @} /// @name Lie Group /// @{ // compose T1*T2 // between T2*inverse(T1) // identity I4 // inverse inverse(T) /// @} }; template<> struct traits : public internal::LieGroupTraits {}; } #include #include #include #include #include #include #include using namespace gtsam; using namespace std; //GTSAM_CONCEPT_POSE_INST(Similarity3); static Point3 P(0.2,0.7,-2); static Rot3 R = Rot3::rodriguez(0.3,0,0); static Similarity3 T(R,Point3(3.5,-8.2,4.2),1); static Similarity3 T2(Rot3::rodriguez(0.3,0.2,0.1),Point3(3.5,-8.2,4.2),1); static Similarity3 T3(Rot3::rodriguez(-90, 0, 0), Point3(1, 2, 3), 1); //****************************************************************************** TEST(Similarity3, Constructors) { Similarity3 test; } //****************************************************************************** TEST(Similarity3, Getters) { Similarity3 test; EXPECT(assert_equal(Rot3(), test.rotation())); EXPECT(assert_equal(Point3(), test.translation())); EXPECT_DOUBLES_EQUAL(1.0, test.scale(), 1e-9); } //****************************************************************************** TEST(Similarity3, Getters2) { Similarity3 test(Rot3::ypr(1, 2, 3), Point3(4, 5, 6), 7); EXPECT(assert_equal(Rot3::ypr(1, 2, 3), test.rotation())); EXPECT(assert_equal(Point3(4, 5, 6), test.translation())); EXPECT_DOUBLES_EQUAL(7.0, test.scale(), 1e-9); } //****************************************************************************** TEST(Similarity3, Manifold) { EXPECT_LONGS_EQUAL(7, Similarity3::Dim()); Vector z = Vector7::Zero(); Similarity3 sim; EXPECT(sim.retract(z) == sim); Vector7 v = Vector7::Zero(); v(6) = 2; Similarity3 sim2; EXPECT(sim2.retract(z) == sim2); EXPECT(assert_equal(z, sim2.localCoordinates(sim))); Similarity3 sim3 = Similarity3(Rot3(), Point3(1, 2, 3), 1); Vector v3(7); v3 << 0, 0, 0, 1, 2, 3, 0; EXPECT(assert_equal(v3, sim2.localCoordinates(sim3))); // Similarity3 other = Similarity3(Rot3::ypr(0.01, 0.02, 0.03), Point3(0.4, 0.5, 0.6), 1); Similarity3 other = Similarity3(Rot3::ypr(0.1, 0.2, 0.3),Point3(4,5,6),1); Vector vlocal = sim.localCoordinates(other); EXPECT(assert_equal(sim.retract(vlocal), other, 1e-2)); Similarity3 other2 = Similarity3(Rot3::ypr(0.3, 0, 0),Point3(4,5,6),1); Rot3 R = Rot3::rodriguez(0.3,0,0); Vector vlocal2 = sim.localCoordinates(other2); EXPECT(assert_equal(sim.retract(vlocal2), other2, 1e-2)); // TODO add unit tests for retract and localCoordinates } /* ************************************************************************* */ TEST( Similarity3, retract_first_order) { Similarity3 id; Vector v = zero(7); v(0) = 0.3; EXPECT(assert_equal(Similarity3(R, Point3(), 1), id.retract(v),1e-2)); v(3)=0.2;v(4)=0.7;v(5)=-2; EXPECT(assert_equal(Similarity3(R, P, 1),id.retract(v),1e-2)); } /* ************************************************************************* */ TEST(Similarity3, localCoordinates_first_order) { Vector d12 = repeat(7,0.1); d12(6) = 1.0; Similarity3 t1 = T, t2 = t1.retract(d12); EXPECT(assert_equal(d12, t1.localCoordinates(t2))); } /* ************************************************************************* */ TEST(Similarity3, manifold_first_order) { Similarity3 t1 = T; Similarity3 t2 = T3; Similarity3 origin; Vector d12 = t1.localCoordinates(t2); EXPECT(assert_equal(t2, t1.retract(d12))); Vector d21 = t2.localCoordinates(t1); EXPECT(assert_equal(t1, t2.retract(d21))); } TEST(Similarity3, Optimization) { Similarity3 prior = Similarity3(Rot3::ypr(0.1, 0.2, 0.3), Point3(1, 2, 3), 4); prior.print("goal angle"); noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(7, 1); Symbol key('x',1); Symbol key2('x',2); PriorFactor factor(key, prior, model); NonlinearFactorGraph graph; graph.push_back(factor); graph.print("full graph"); Values initial; initial.insert(key, Similarity3()); initial.print("initial estimate"); Values result; result.insert(key2, LevenbergMarquardtOptimizer(graph, initial).optimize()); result.print("final result"); EXPECT(assert_equal(prior, result.at(key2), 1e-2)); } //****************************************************************************** int main() { TestResult tr; return TestRegistry::runAllTests(tr); } //******************************************************************************