/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file ConcurrentCalibration.cpp * @brief First step towards estimating monocular calibration in concurrent * filter/smoother framework. To start with, just batch LM. * @date June 11, 2014 * @author Chris Beall */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace gtsam; int main(int argc, char** argv){ Values initial_estimate; NonlinearFactorGraph graph; const noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(2,1); string calibration_loc = findExampleDataFile("VO_calibration00s.txt"); string pose_loc = findExampleDataFile("VO_camera_poses00s.txt"); string factor_loc = findExampleDataFile("VO_stereo_factors00s.txt"); //read camera calibration info from file // focal lengths fx, fy, skew s, principal point u0, v0, baseline b double fx, fy, s, u0, v0, b; ifstream calibration_file(calibration_loc.c_str()); cout << "Reading calibration info" << endl; calibration_file >> fx >> fy >> s >> u0 >> v0 >> b; //create stereo camera calibration object const Cal3_S2::shared_ptr K(new Cal3_S2(fx,fy,s,u0,v0)); const Cal3_S2::shared_ptr noisy_K(new Cal3_S2(fx*1.2,fy*1.2,s,u0-10,v0+10)); initial_estimate.insert(Symbol('K', 0), *noisy_K); noiseModel::Diagonal::shared_ptr calNoise = noiseModel::Diagonal::Sigmas((Vector(5) << 500, 500, 1e-5, 100, 100).finished()); graph.push_back(PriorFactor(Symbol('K', 0), *noisy_K, calNoise)); ifstream pose_file(pose_loc.c_str()); cout << "Reading camera poses" << endl; int pose_id; MatrixRowMajor m(4,4); //read camera pose parameters and use to make initial estimates of camera poses while (pose_file >> pose_id) { for (int i = 0; i < 16; i++) { pose_file >> m.data()[i]; } initial_estimate.insert(Symbol('x', pose_id), Pose3(m)); } noiseModel::Isotropic::shared_ptr poseNoise = noiseModel::Isotropic::Sigma(6, 0.01); graph.push_back(PriorFactor(Symbol('x', pose_id), Pose3(m), poseNoise)); // camera and landmark keys size_t x, l; // pixel coordinates uL, uR, v (same for left/right images due to rectification) // landmark coordinates X, Y, Z in camera frame, resulting from triangulation double uL, uR, v, X, Y, Z; ifstream factor_file(factor_loc.c_str()); cout << "Reading stereo factors" << endl; //read stereo measurement details from file and use to create and add GenericStereoFactor objects to the graph representation while (factor_file >> x >> l >> uL >> uR >> v >> X >> Y >> Z) { // graph.push_back( GenericStereoFactor(StereoPoint2(uL, uR, v), model, Symbol('x', x), Symbol('l', l), K)); graph.push_back(GeneralSFMFactor2(Point2(uL,v), model, Symbol('x', x), Symbol('l', l), Symbol('K', 0))); //if the landmark variable included in this factor has not yet been added to the initial variable value estimate, add it if (!initial_estimate.exists(Symbol('l', l))) { Pose3 camPose = initial_estimate.at(Symbol('x', x)); //transform_from() transforms the input Point3 from the camera pose space, camPose, to the global space Point3 worldPoint = camPose.transform_from(Point3(X, Y, Z)); initial_estimate.insert(Symbol('l', l), worldPoint); } } Pose3 first_pose = initial_estimate.at(Symbol('x',1)); //constrain the first pose such that it cannot change from its original value during optimization // NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky // QR is much slower than Cholesky, but numerically more stable graph.push_back(NonlinearEquality(Symbol('x',1),first_pose)); cout << "Optimizing" << endl; LevenbergMarquardtParams params; params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA; params.verbosity = NonlinearOptimizerParams::ERROR; //create Levenberg-Marquardt optimizer to optimize the factor graph LevenbergMarquardtOptimizer optimizer = LevenbergMarquardtOptimizer(graph, initial_estimate,params); // Values result = optimizer.optimize(); string K_values_file = "K_values.txt"; ofstream stream_K(K_values_file.c_str()); double currentError; stream_K << optimizer.iterations() << " " << optimizer.values().at(Symbol('K',0)).vector().transpose() << endl; // Iterative loop do { // Do next iteration currentError = optimizer.error(); optimizer.iterate(); stream_K << optimizer.iterations() << " " << optimizer.values().at(Symbol('K',0)).vector().transpose() << endl; if(params.verbosity >= NonlinearOptimizerParams::ERROR) cout << "newError: " << optimizer.error() << endl; } while(optimizer.iterations() < params.maxIterations && !checkConvergence(params.relativeErrorTol, params.absoluteErrorTol, params.errorTol, currentError, optimizer.error(), params.verbosity)); Values result = optimizer.values(); cout << "Final result sample:" << endl; Values pose_values = result.filter(); pose_values.print("Final camera poses:\n"); Values(result.filter()).print("Final K\n"); noisy_K->print("Initial noisy K\n"); K->print("Initial correct K\n"); return 0; }