/** * @file testBayesNetConditioner.cpp * @brief Unit tests for BayesNetConditioner * @author Frank Dellaert **/ #include #include #include #define GTSAM_MAGIC_KEY #include #include #include using namespace std; using namespace gtsam; #include using namespace example; /* ************************************************************************* */ TEST( BayesNetPreconditioner, conjugateGradients ) { // Build a planar graph GaussianFactorGraph Ab; VectorConfig xtrue; size_t N = 3; boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b // Get the spanning tree and corresponding ordering GaussianFactorGraph Ab1, Ab2; // A1*x-b1 and A2*x-b2 boost::tie(Ab1, Ab2) = splitOffPlanarTree(N, Ab); // Eliminate the spanning tree to build a prior Ordering ordering = planarOrdering(N); GaussianBayesNet Rc1 = Ab1.eliminate(ordering); // R1*x-c1 VectorConfig xbar = optimize(Rc1); // xbar = inv(R1)*c1 // Create BayesNet-preconditioned system BayesNetPreconditioner system(Ab,Rc1); // Create zero config y0 and perturbed config y1 VectorConfig y0; Vector z2 = zero(2); BOOST_FOREACH(const Symbol& j, ordering) y0.insert(j,z2); VectorConfig y1 = y0; y1["x2003"] = Vector_(2, 1.0, -1.0); VectorConfig x1 = system.x(y1); // Check gradient for y0 VectorConfig expectedGradient0; expectedGradient0.insert("x1001", Vector_(2,-1000.,-1000.)); expectedGradient0.insert("x1002", Vector_(2, 0., -300.)); expectedGradient0.insert("x1003", Vector_(2, 0., -300.)); expectedGradient0.insert("x2001", Vector_(2, -100., 200.)); expectedGradient0.insert("x2002", Vector_(2, -100., 0.)); expectedGradient0.insert("x2003", Vector_(2, -100., -200.)); expectedGradient0.insert("x3001", Vector_(2, -100., 100.)); expectedGradient0.insert("x3002", Vector_(2, -100., 0.)); expectedGradient0.insert("x3003", Vector_(2, -100., -100.)); VectorConfig actualGradient0 = system.gradient(y0); CHECK(assert_equal(expectedGradient0,actualGradient0)); #ifdef VECTORBTREE CHECK(actualGradient0.cloned(y0)); #endif // Solve using PCG bool verbose = false; double epsilon = 1e-6; // had to crank this down !!! size_t maxIterations = 100; VectorConfig actual_y = gtsam::conjugateGradients(system, y1, verbose, epsilon, epsilon, maxIterations); VectorConfig actual_x = system.x(actual_y); CHECK(assert_equal(xtrue,actual_x)); // Compare with non preconditioned version: VectorConfig actual2 = conjugateGradientDescent(Ab, x1, verbose, epsilon, maxIterations); CHECK(assert_equal(xtrue,actual2)); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */