/** * @file GaussianISAM2 * @brief Full non-linear ISAM * @author Michael Kaess */ #include using namespace std; using namespace gtsam; // Explicitly instantiate so we don't have to include everywhere #include template class ISAM2; template class ISAM2; namespace gtsam { /* ************************************************************************* */ void optimize2(const GaussianISAM2::sharedClique& clique, double threshold, set& changed, const set& replaced, VectorConfig& delta, int& count) { // if none of the variables in this clique (frontal and separator!) changed // significantly, then by the running intersection property, none of the // cliques in the children need to be processed bool process_children = false; // parents are assumed to already be solved and available in result GaussianISAM2::Clique::const_reverse_iterator it; for (it = clique->rbegin(); it!=clique->rend(); it++) { GaussianConditional::shared_ptr cg = *it; // is this variable part of the top of the tree that has been redone? bool redo = (replaced.find(cg->key()) != replaced.end()); // only solve if at least one of the separator variables changed // significantly, ie. is in the set "changed" bool found = true; if (!redo && cg->nrParents()>0) { found = false; BOOST_FOREACH(const Symbol& key, cg->parents()) { if (changed.find(key)!=changed.end()) { found = true; } } } if (found) { // Solve for that variable Vector d = cg->solve(delta); count++; // have to process children; only if none of the variables in the // clique were affected, and none of the variables in the clique // had a variable in the separator that changed significantly // can we be sure that the subtree is not affected process_children = true; // we change the delta unconditionally if redo, otherwise // conditioned on the change being above the threshold if (!redo) { // change is measured against the previous delta! if (delta.contains(cg->key())) { Vector d_old = delta[cg->key()]; if (max(abs(d-d_old)) >= threshold) { redo = true; } } else { redo = true; // never created before, so we simply add it } } // replace current entry in delta vector if (redo) { changed.insert(cg->key()); if (delta.contains(cg->key())) { delta[cg->key()] = d; // replace existing entry } else { delta.insert(cg->key(), d); // insert new entry } } } } if (process_children) { BOOST_FOREACH(const GaussianISAM2::sharedClique& child, clique->children_) { optimize2(child, threshold, changed, replaced, delta, count); } } } /* ************************************************************************* */ // fast full version without threshold void optimize2(const GaussianISAM2::sharedClique& clique, boost::shared_ptr delta) { // parents are assumed to already be solved and available in result GaussianISAM2::Clique::const_reverse_iterator it; for (it = clique->rbegin(); it!=clique->rend(); it++) { GaussianConditional::shared_ptr cg = *it; Vector d = cg->solve(*delta); // store result in partial solution delta->insert(cg->key(), d); } BOOST_FOREACH(const GaussianISAM2::sharedClique& child, clique->children_) { optimize2(child, delta); } } /* ************************************************************************* */ boost::shared_ptr optimize2(const GaussianISAM2::sharedClique& root) { boost::shared_ptr delta(new VectorConfig); set changed; // starting from the root, call optimize on each conditional optimize2(root, delta); return delta; } /* ************************************************************************* */ int optimize2(const GaussianISAM2::sharedClique& root, double threshold, const set& keys, VectorConfig& delta) { set changed; int count = 0; // starting from the root, call optimize on each conditional optimize2(root, threshold, changed, keys, delta, count); return count; } /* ************************************************************************* */ void nnz_internal(const GaussianISAM2::sharedClique& clique, int& result) { // go through the conditionals of this clique GaussianISAM2::Clique::const_reverse_iterator it; for (it = clique->rbegin(); it!=clique->rend(); it++) { GaussianConditional::shared_ptr cg = *it; int dimSep = 0; for (GaussianConditional::const_iterator matrix_it = cg->parentsBegin(); matrix_it != cg->parentsEnd(); matrix_it++) { dimSep += matrix_it->second.size2(); } int dimR = cg->dim(); result += ((dimR+1)*dimR)/2 + dimSep*dimR; } // traverse the children BOOST_FOREACH(const GaussianISAM2::sharedClique& child, clique->children_) { nnz_internal(child, result); } } /* ************************************************************************* */ int calculate_nnz(const GaussianISAM2::sharedClique& clique) { int result = 0; // starting from the root, add up entries of frontal and conditional matrices of each conditional nnz_internal(clique, result); return result; } } /// namespace gtsam