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1 Basic Lie Group Concepts

1.1 A Manifold and a Group
A Lie group G is a manifold that possesses a smooth group operation. Associated with it is a Lie
Algebra g which, loosely speaking, can be identified with the tangent space at the identity and
completely defines how the groups behaves around the identity. There is a mapping from g back
to G, called the exponential map

exp : g→ G

and a corresponding inverse
log : G→ g

that maps elements in G to an element in g.

1.2 Lie Algebra
The Lie Algebra g is called an algebra because it is endowed with a binary operation, the Lie
bracket [X ,Y ], the properties of which are closely related to the group operation of G. For example,

in matrix Lie groups, the Lie bracket is given by [A,B] ∆= AB−BA. The relationship with the group
operation is as follows: for commutative Lie groups vector addition X +Y in g mimicks the group
operation. For example, if we have Z = X +Y in g, when mapped backed to G via the exponential
map we obtain

eZ = eX+Y = eX eY

However, this does not hold for non-commutative Lie groups:

Z = log(eX eY ) 6= X +Y

Instead, Z can be calculated using the Baker-Campbell-Hausdorff (BCH) formula:1

Z = X +Y +[X ,Y ]/2+[X −Y, [X ,Y ]]/12− [Y, [X , [X ,Y ]]]/24+ . . .

For commutative groups the bracket is zero and we recover Z = X +Y . For non-commutative
groups we can use the BCH formula to approximate it.

1.3 Exponential Coordinates
For n-dimensional matrix Lie groups, the Lie algebra g is isomorphic to Rn, and we can define the
mapping

ˆ: Rn → g

ˆ: x→ x̂

which maps n-vectors x ∈Rn to elements of g. In the case of matrix Lie groups, the elements x̂ of
g are n×n matrices, and the map is given by

x̂ =
n

∑
i=1

xiGi (1)

1http://en.wikipedia.org/wiki/Baker–Campbell–Hausdorff_formula
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where the Gi are n×n matrices known as the Lie group generators. The meaning of the map x→ x̂
will depend on the group G and will be very intuitive.

1.4 The Adjoint Map
Below we frequently make use of the equality2

gex̂g−1 = eAdgx̂

where Adg : g→ g is a map parameterized by a group element g. The intuitive explanation is that a
change exp(x̂) defined around the orgin, but applied at the group element g, can be written in one
step by taking the adjoint Adgx̂ of x̂. In the case of a matrix group the ajoint can be written as 3

AdT x̂ ∆= Tex̂T−1

and hence we have

Tex̂T−1 = eT x̂T−1

where both T and x̂ are n×n matrices for an n-dimensional Lie group.

1.5 Actions
The (usual) action of an n-dimensional matrix group G is matrix-vector multiplication on Rn,

q = T p

with p,q ∈ Rn and T ∈ GL(n).

2http://en.wikipedia.org/wiki/Exponential_map
3http://en.wikipedia.org/wiki/Adjoint_representation_of_a_Lie_group
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2 2D Rotations
We first look at a very simple group, the 2D rotations.

2.1 Basics
The Lie group SO(2) is a subgroup of the general linear group GL(2) of 2×2 invertible matrices.
Its Lie algebra so(2) is the vector space of 2× 2 skew-symmetric matrices. Since SO(2) is a
one-dimensional manifold, so(2) is isomorphic to R and we define

ˆ: R→ so(2)

ˆ: θ → θ̂ = [θ ]+

which maps the angle θ to the 2×2 skew-symmetric matrix [θ ]+:

[θ ]+ =
[

0 −θ

θ 0

]
The exponential map can be computed in closed form as

R = e[θ ]+ =
[

cosθ −sinθ

sinθ cosθ

]

2.2 Actions
In the case of SO(2) the vector space is R2, and the group action corresponds to rotating a point

q = Rp

We would now like to know what an incremental rotation parameterized by θ would do:

q(θ) = Re[θ ]+ p

hence the derivative is:

∂q(ω)
∂ω

= R
∂

∂ω

(
e[θ ]+ p

)
= R

∂

∂ω
([θ ]+p) = RHp

Note that

[θ ]+

[
x
y

]
= θRπ/2

[
x
y

]
= θ

[
−y
x

]
(2)

which acts like a restricted “cross product” in the plane.
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3 2D Rigid Transformations

3.1 Basics
The Lie group SE(2) is a subgroup of the general linear group GL(3) of 3×3 invertible matrices
of the form

T ∆=
[

R t
0 1

]
where R ∈ SO(2) is a rotation matrix and t ∈ R2 is a translation vector. Its Lie algebra se(2) is the
vector space of 3×3 twists ξ̂ parameterized by the twist coordinates ξ ∈ R3, with the mapping

ξ
∆=

[
v
ω

]
→ ξ̂

∆=
[

[ω]+ v
0 0

]
Note we think of robots as having a pose (x,y,θ) and hence I reserved the first two components
for translation and the last for rotation. The Lie group generators are

Gx =

 0 0 1
0 0 0
0 0 0

 Gy =

 0 0 0
0 0 1
0 0 0

 Gθ =

 0 −1 0
1 0 0
0 0 0


Applying the exponential map to a twist ξ yields a screw motion yielding an element in SE(2):

T = exp ξ̂

A closed form solution for the exponential map is in the works...

3.2 The Adjoint Map
The adjoint is

AdT ξ̂ = T ξ̂ T−1

=
[

R t
0 1

][
[ω]+ v

0 0

][
RT −RT t
0 1

]
=

[
[ω]+ −[ω]+t +Rv

0 0

]
=

[
[ω]+ Rv−ωRπ/2t

0 0

]
(3)

From this we can express the Adjoint map in terms of plane twist coordinates:[
v′

ω ′

]
=

[
R −Rπ/2t
0 1

][
v
ω

]
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3.3 Actions
The action of SE(2) on 2D points is done by embedding the points in R3 by using homogeneous
coordinates

q̂ =
[

q
1

]
=

[
R t
0 1

][
p
1

]
= T p̂

Analoguous to SE(3), we can compute a velocity ξ̂ p̂ in the local T frame:

ξ̂ p̂ =
[

[ω]+ v
0 0

][
p
1

]
=

[
[ω]+p+ v

0

]
By only taking the top two rows, we can write this as a velocity in R2, as the product of a 2× 3
matrix Hp that acts upon the exponential coordinates ξ directly:

[ω]+p+ v = v+Rπ/2 pω =
[

I2 Rπ/2 p
][

v
ω

]
= Hpξ
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4 3D Rotations

4.1 Basics
The Lie group SO(3) is a subgroup of the general linear group GL(3) of 3×3 invertible matrices.
Its Lie algebra so(3) is the vector space of 3×3 skew-symmetric matrices. The exponential map
can be computed in closed form using Rodrigues’ formula.

Since SO(3) is a three-dimensional manifold, so(3) is isomorphic to R3 and we define the map

ˆ: R3 → so(3)

ˆ: ω → ω̂ = [ω]×
which maps 3-vectors ω to skew-symmetric matrices [ω]× :

[ω]× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 = ωxGx +ωyGy +ωzGz

where the Gi are the generators for SO(3),

Gx =

 0 0 0
0 0 −1
0 1 0

Gy =

 0 0 1
0 0 0
−1 0 0

 Gz =

 0 −1 0
1 0 0
0 0 0


corresponding to a rotation around X , Y , and Z, respectively. The Lie bracket [x,y] corresponds to
the cross product x× y in R3.

For every 3−vector ω there is a corresponding rotation matrix

R = e[ω]×

and this is defines the canonical parameterization of SO(3), with ω known as the canonical or
exponential coordinates. It is equivalent to the axis-angle representation for rotations, where the
unit vector ω/‖ω‖ defines the rotation axis, and its magnitude the amount of rotation θ .

4.2 The Adjoint Map
For rotation matrices R we can prove the following identity (see 5 on page 11):

R[ω]×RT = [Rω]× (4)

Hence, given property (5), the adjoint map for so(3) simplifies to

AdR[ω]× = R[ω]×RT = [Rω]×

and this can be expressed in exponential coordinates simply by rotating the axis ω to Rω .
As an example, to apply an axis-angle rotation ω to a point p in the frame R, we could:

1. First transform p back to the world frame, apply ω , and then rotate back:

q = Re[ω]×RT

2. Immediately apply the transformed axis-angle transformation AdR[ω]× = [Rω]×:

q = e[Rω]× p
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4.3 Actions
In the case of SO(3) the vector space is R3, and the group action corresponds to rotating a point

q = Rp

We would now like to know what an incremental rotation parameterized by ω would do:

q(ω) = Re[ω]× p

hence the derivative is:

∂q(ω)
∂ω

= R
∂

∂ω

(
e[ω]× p

)
= R

∂

∂ω
([ω]×p) = RHp

To calculate Hp we make use of

[ω]×p = ω× p =−p×ω = [−p]×ω
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5 3D Rigid Transformations
The Lie group SE(3) is a subgroup of the general linear group GL(4) of 4×4 invertible matrices
of the form

T ∆=
[

R t
0 1

]
where R ∈ SO(3) is a rotation matrix and t ∈ R3 is a translation vector. Its Lie algebra se(3) is the
vector space of 4×4 twists ξ̂ parameterized by the twist coordinates ξ ∈R6, with the mapping [1]

ξ
∆=

[
ω

v

]
→ ξ̂

∆=
[

[ω]× v
0 0

]
Note we follow Frank Park’s convention and reserve the first three components for rotation, and
the last three for translation. Hence, with this parameterization, the generators for SE(3) are

G1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

G2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 G3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



G4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

G5 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 G6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


Applying the exponential map to a twist ξ yields a screw motion yielding an element in SE(3):

T = exp ξ̂

A closed form solution for the exponential map is given in [1, page 42].

5.1 The Adjoint Map
The adjoint is

AdT ξ̂ = T ξ̂ T−1

=
[

R t
0 1

][
[ω]× v

0 0

][
RT −RT t
0 1

]
=

[
[Rω]× −[Rω]×t +Rv

0 0

]
=

[
[Rω]× t×Rω +Rv

0 0

]
From this we can express the Adjoint map in terms of twist coordinates (see also [1] and FP):[

ω ′

v′

]
=

[
R 0

[t]×R R

][
ω

v

]
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5.2 Actions
The action of SE(3) on 3D points is done by embedding the points in R4 by using homogeneous
coordinates

q̂ =
[

q
1

]
=

[
R t
0 1

][
p
1

]
= T p̂

We would now like to know what an incremental rotation parameterized by ξ would do:

q̂(ξ ) = Teξ̂ p̂

hence the derivative (following the exposition in Section ??):

∂ q̂(ξ )
∂ξ

= T
∂

∂ξ

(
ξ̂ p̂

)
= T Hp

where ξ̂ p̂ corresponds to a velocity in R4 (in the local T frame):

ξ̂ p̂ =
[

[ω]× v
0 0

][
p
1

]
=

[
ω× p+ v

0

]
Notice how velocities are anologous to points at infinity in projective geometry: they correspond
to free vectors indicating a direction and magnitude of change.

By only taking the top three rows, we can write this as a velocity in R3, as the product of a
3×6 matrix Hp that acts upon the exponential coordinates ξ directly:

ω× p+ v =−p×ω + v =
[
−[p]× I3

][
ω

v

]
= Hpξ
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Appendix: Proof of Property 5
We can prove the following identity for rotation matrices R,

R[ω]×RT = R[ω]×
[

a1 a2 a3
]

= R
[

ω×a1 ω×a2 ω×a3
]

=

 a1(ω×a1) a1(ω×a2) a1(ω×a3)
a2(ω×a1) a2(ω×a2) a2(ω×a3)
a3(ω×a1) a3(ω×a2) a3(ω×a3)


=

 ω(a1×a1) ω(a2×a1) ω(a3×a1)
ω(a1×a2) ω(a2×a2) ω(a3×a2)
ω(a1×a3) ω(a2×a3) ω(a3×a3)


=

 0 −ωa3 ωa2
ωa3 0 −ωa1
−ωa2 ωa1 0


= [Rω]× (5)

where a1, a2, and a3 are the rows of R. Above we made use of the orthogonality of rotation matrices
and the triple product rule:

a(b× c) = b(c×a) = c(a×b)
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