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1 Basic Lie Group Concepts

1.1 A Manifold and a Group

A Lie group G is a manifold that possesses a smooth group operation. Associated with it is a Lie
Algebra g which, loosely speaking, can be identified with the tangent space at the identity and
completely defines how the groups behaves around the identity. There is a mapping from g back
to G, called the exponential map

exp:g—G

and a corresponding inverse
log:G—g

that maps elements in G to an element in g.

1.2 Lie Algebra

The Lie Algebra g is called an algebra because it is endowed with a binary operation, the Lie
bracket [X, Y], the properties of which are closely related to the group operation of G. For example,

in matrix Lie groups, the Lie bracket is given by [A, B| 2 AB—BA. The relationship with the group
operation is as follows: for commutative Lie groups vector addition X 4+ Y in g mimicks the group
operation. For example, if we have Z = X +7Y in g, when mapped backed to G via the exponential
map we obtain

However, this does not hold for non-commutative Lie groups:
Z=log(eXe") £ X +Y
Instead, Z can be calculated using the Baker-Campbell-Hausdorff (BCH) formula:!
Z=X+Y+[X,Y]/2+[X-Y,[X,Y]]/12-]Y,[X,[X,Y]]]/24 +...

For commutative groups the bracket is zero and we recover Z = X 4+ Y. For non-commutative
groups we can use the BCH formula to approximate it.

1.3 Exponential Coordinates

For n-dimensional matrix Lie groups, the Lie algebra g is isomorphic to R”, and we can define the

mapping
“RY'—g

Ttx— X
which maps n-vectors x €R” to elements of g. In the case of matrix Lie groups, the elements £ of
g are n X n matrices, and the map is given by

£= ixiGi (1

Thttp://en.wikipedia.org/wiki/Baker—-Campbell-Hausdorff_formula

2



where the G are n x n matrices known as the Lie group generators. The meaning of the map x — £
will depend on the group G and will be very intuitive.

1.4 The Adjoint Map

Below we frequently make use of the equality?
gefg™! = Adst

where Ad, : g — g is a map parameterized by a group element g. The intuitive explanation is that a
change exp (£) defined around the orgin, but applied at the group element g, can be written in one
step by taking the adjoint Adgx of X. In the case of a matrix group the ajoint can be written as 3

Adri 2 Te'T!
and hence we have
TQXAT_] — eTxAT71

where both 7 and X are n X n matrices for an n-dimensional Lie group.

1.5 Actions

The (usual) action of an n-dimensional matrix group G is matrix-vector multiplication on R",
q=Tp

with p,g € R" and T € GL(n).

Zhttp://en.wikipedia.org/wiki/Exponential_map
3http://en.wikipedia.org/wiki/Adjoint_representation_of_a_Lie_group



2 2D Rotations

We first look at a very simple group, the 2D rotations.

2.1 Basics

The Lie group SO(2) is a subgroup of the general linear group GL(2) of 2 x 2 invertible matrices.
Its Lie algebra so(2) is the vector space of 2 x 2 skew-symmetric matrices. Since SO(2) is a
one-dimensional manifold, so(2) is isomorphic to R and we define

"R —s0(2)

"0 —6=10],

which maps the angle 6 to the 2 x 2 skew-symmetric matrix [0]:

o=|p o

The exponential map can be computed in closed form as

_ el cos@ —sinf
kR=e {sine cos 6

2.2 Actions

In the case of SO(2) the vector space is R?, and the group action corresponds to rotating a point

qg=Rp

We would now like to know what an incremental rotation parameterized by 6 would do:

q(8) =Rel® p
hence the derivative is:
dg(w) 9 (e, \_ 0 _
e Xom (6 +P) =R+ ([6]+p) = RH,
Note that
[9]{;6}:0&/2{;6}:9{?] 2)

which acts like a restricted “cross product” in the plane.



3 2D Rigid Transformations

3.1 Basics
The Lie group SE(2) is a subgroup of the general linear group GL(3) of 3 x 3 invertible matrices

of the form
A| R t
re[5 )

where R € SO(2) is a rotation matrix and ¢ € R* is a translation vector. Its Lie algebra se(2) is the
vector space of 3 x 3 twists £ parameterized by the twist coordinates & € R3, with the mapping

Al ¢ A | o] v
S PIRH
Note we think of robots as having a pose (x,y,0) and hence I reserved the first two components
for translation and the last for rotation. The Lie group generators are

00 1 000 0 -1 0
G=|looo|&@=]l001|G°=|1 0 0
000 000 0 0 0

Applying the exponential map to a twist £ yields a screw motion yielding an element in SE(2):
T = expé

A closed form solution for the exponential map is in the works...

3.2 The Adjoint Map

The adjoint is

Adré = T_ET_I
e sl

_ [ lel —[wmw}

0 0
[ Rv — R )t
— [ag+ v %)7[/2 :| (3)

From this we can express the Adjoint map in terms of plane twist coordinates:

w]=lo L]



3.3 Actions

The action of SE(2) on 2D points is done by embedding the points in R3 by using homogeneous

coordinates
~ _|lgqg| | Rt )2
i= 1] =15 ][ 7]

Analoguous to SE(3), we can compute a velocity é p in the local T frame:

es_ | [y vip]|_|[opty

SP= { 0o o1~ 0
By only taking the top two rows, we can write this as a velocity in R?, as the product of a 2 x 3
matrix H), that acts upon the exponential coordinates & directly:

v
(0]

@ p+v=viReppo=[ b Rep ] [ ] ¢



4 3D Rotations

4.1 Basics

The Lie group SO(3) is a subgroup of the general linear group GL(3) of 3 x 3 invertible matrices.
Its Lie algebra so(3) is the vector space of 3 x 3 skew-symmetric matrices. The exponential map
can be computed in closed form using Rodrigues’ formula.

Since SO(3) is a three-dimensional manifold, so(3) is isomorphic to R3 and we define the map

" R3 — s0(3)
To— 0 =|o)

X
which maps 3-vectors @ to skew-symmetric matrices [@]x :

0 -0 o
(0] = , 0 - |=0o6+w06+uwG
_wy a)x O

where the G' are the generators for SO(3),

00 O 0 01 0 -1 0
G=[00 -1 |G= 0 00 |)]G=|1 0 0
01 O -1 0 0 0 0 O

corresponding to a rotation around X, Y, and Z, respectively. The Lie bracket [x,y] corresponds to
the cross product x X y in R3.
For every 3—vector @ there is a corresponding rotation matrix

R = el

and this is defines the canonical parameterization of SO(3), with @ known as the canonical or
exponential coordinates. It is equivalent to the axis-angle representation for rotations, where the
unit vector @/ ||@|| defines the rotation axis, and its magnitude the amount of rotation 6.

4.2 The Adjoint Map

For rotation matrices R we can prove the following identity (see 5 on page 11):
R[] <R = [Ro]» )
Hence, given property (5), the adjoint map for so(3) simplifies to
Adg|®]x = R[®]xR" = [Rw]
and this can be expressed in exponential coordinates simply by rotating the axis ® to Rw.
As an example, to apply an axis-angle rotation @ to a point p in the frame R, we could:
1. First transform p back to the world frame, apply ®, and then rotate back:

q= Rel®xRT
2. Immediately apply the transformed axis-angle transformation Adg[®]« = [R®]«:

qg= e[Rw]Xp



4.3 Actions

In the case of SO(3) the vector space is R3, and the group action corresponds to rotating a point
q=Rp
We would now like to know what an incremental rotation parameterized by @ would do:
g(@) = Rel®p

hence the derivative is:

d

aq(w) _ R% (e[w}x])> :R% ([(D]xp) = RH),

ex0)
To calculate H,, we make use of

[@]xp=0xp=—pxo=|-plxo



5 3D Rigid Transformations

The Lie group SE(3) is a subgroup of the general linear group GL(4) of 4 x 4 invertible matrices

of the form
A| R t
re |5 ]

where R € SO(3) is a rotation matrix and ¢ € R3 is a translation vector. Its Lie algebra se(3) is the
vector space of 4 x 4 twists & parameterized by the rwist coordinates & € R®, with the mapping [1]

A 0] £ A [(D] X 1%

g —_— g
Note we follow Frank Park’s convention and reserve the first three components for rotation, and
the last three for translation. Hence, with this parameterization, the generators for SE(3) are

00 0 0 0 010 0 -1 00
. oo -1o0of, [0o000] 5 [1 000
“=lo100]|T| 1000]|%= |0 o000
00 0 0 0 000 0 0 00
0001 0000 0000
s oooo|l s |ooo1] 6 0000
“=looo00|“T|lo0o00]“ 0001
0000 0000 0000

Applying the exponential map to a twist & yields a screw motion yielding an element in SE(3):
T = expé

A closed form solution for the exponential map is given in [1, page 42].

5.1 The Adjoint Map
The adjoint is

Adré = TET™!
[ Rt [« v |[RT —RT:
~ o1 0 0[O0 1
[ [Ro]x —[R®]«t+Rvy
- 0

®
0

[Rw]x tXRw+Rv
0 0

From this we can express the Adjoint map in terms of twist coordinates (see also [1] and FP):

(][ w0



5.2 Actions

The action of SE(3) on 3D points is done by embedding the points in R* by using homogeneous

coordinates
~ _|lgqg| | Rt )2
i= 1] =15 ][ 7]

We would now like to know what an incremental rotation parameterized by & would do:

q(§) =Te*p
hence the derivative (following the exposition in Section ?7?):

where é p corresponds to a velocity in R* (in the local T frame):

t. | [@]x v pl | oxp+v

SP= { 0o o1~ 0
Notice how velocities are anologous to points at infinity in projective geometry: they correspond
to free vectors indicating a direction and magnitude of change.

By only taking the top three rows, we can write this as a velocity in R3, as the product of a
3 x 6 matrix H), that acts upon the exponential coordinates £ directly:

oxp+v=—pxo+v=[ —[plx b ] [?]:Hpé
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Appendix: Proof of Property 5
We can prove the following identity for rotation matrices R,

R[(D]XRT = R[(O]X[al a a3]
= R[a)xal W X ap (x)><a3}

[ aj(wxay) a(0xay) aj(wxaz) ]
= az(wxal) az(a)xaz) az(a)xa3)

| a3(a)><a1) a3(a)><a2) 613(an3) |

[ w(a; xa;) w(axxa)) o(azxay) |
= w(a; xay) o(ayxay) o(azxay)

i 0)(611 X a3) CO(a2 X a3) w(a3 X a3)

[ 0 —@as way
g COCZ3 O _wal

| —ay waj 0

where a1, ap, and a3 are the rows of R. Above we made use of the orthogonality of rotation matrices
and the triple product rule:

a(bxc)=b(cxa)=claxb)
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