
Geometry Derivatives and Other Hairy Math

Frank Dellaert

February 28, 2010

1 Review of Lie Groups

1.1 A Manifold and a Group
A Lie group G is a manifold that possesses a smooth group operation. Associated with it is a Lie
Algebra g which, loosely speaking, can be identified with the tangent space at the identity and
completely defines how the groups behaves around the identity. There is a mapping from g back
to G, called the exponential map

exp : g→ G

and a corresponding inverse
log : G→ g

that maps elements in G to an element in g.

1.2 Lie Algebra
The Lie Algebra g is called an algebra because it is endowed with a binary operation, the Lie
bracket [X ,Y ], the properties of which are closely related to the group operation of G. For example,

in matrix Lie groups, the Lie bracket is given by [A,B] ∆= AB−BA. The Lie bracket does not mimick
the group operation, as in non-commutative Lie groups we do not have the usual simplification

eZ = eX eY 6= eX+Y

where X , Y , and Z elements of the Lie algebra g. Instead, Z can be calculated using the Baker-
Campbell-Hausdorff (BCH) formula:1

Z = X +Y +[X ,Y ]/2+[X −Y, [X ,Y ]]/12− [Y, [X , [X ,Y ]]]/24+ . . .

For commutative groups the bracket is zero and we recover Z = X +Y . For non-commutative
groups we can use the BCH formula to approximate it.

1http://en.wikipedia.org/wiki/Baker–Campbell–Hausdorff_formula

1



1.3 Exponential Coordinates
For n-dimensional matrix Lie groups, the Lie algebra g is isomorphic to Rn, and we can define the
mapping

ˆ: Rn → g

ˆ: x→ x̂

which maps n-vectors x ∈Rn to elements of g. In the case of matrix Lie groups, the elements x̂ of
g are n×n matrices, and the map is given by

x̂ =
n

∑
i=1

xiGi (1)

where the Gi are n×n matrices known as the Lie group generators. The meaning of the map x→ x̂
will depend on the group G and will be very intuitive.

1.4 The Adjoint Map
Below we frequently make use of the equality2

gex̂g−1 = eAdgx̂

where Adg : g→ g is a map parameterized by a group element g. The intuitive explanation is that a
change exp(x̂) defined around the orgin, but applied at the group element g, can be written in one
step by taking the adjoint Adgx̂ of x̂. In the case of a matrix group the ajoint can be written as 3

AdT x̂ ∆= Tex̂T−1

and hence we have

Tex̂T−1 = eT x̂T−1

where both T and x̂ are n× n matrices for an n-dimensional Lie group. Below we introduce the
most important Lie groups that we deal with.

2 Derivatives of Mappings
The derivatives for inverse, compose, and between can be derived from Lie group principles.
Specifically, to find the derivative of a function f (g), we want to find the Lie algebra element
ŷ ∈ g, that will result from changing g using x̂, also in exponential coordinates:

f (g)eŷ = f
(
gex̂)

Calculating these derivatives requires that we know the form of the function f .

2http://en.wikipedia.org/wiki/Exponential_map
3http://en.wikipedia.org/wiki/Adjoint_representation_of_a_Lie_group

2



Starting with inverse, i.e., f (g) = g−1, we have

g−1eŷ =
(
gex̂)−1

= e−x̂g−1

eŷ = ge−x̂g−1 = eAdg(−x̂)

ŷ = Adg (−x̂) (2)

In other words, and this is very intuitive in hindsight, the inverse is just negation of x̂, along with
an adjoint to make sure it is applied in the right frame!

Compose can be derived similarly. Let us define two functions to find the derivatives in first
and second arguments:

f1(g) = gh and f2(h) = gh

The latter is easiest, as a change x̂ in the second argument h simply gets applied to the result gh:

f2(h)eŷ = f2
(
hex̂)

gheŷ = ghex̂

ŷ = x̂ (3)

The derivative for the first argument is a bit trickier:

f1(g)eŷ = f1
(
gex̂)

gheŷ = gex̂h

eŷ = h−1ex̂h = eAdh−1 x̂

ŷ = Adh−1 x̂ (4)

In other words, to apply a change x̂ in g we first need to undo h, then apply x̂, and then apply h
again. All can be done in one step by simply applying Adh−1 x̂.

Finally, let us find the derivative of between, defined as between(g,h)= compose(inverse(g),h).
The derivative in the second argument h is similarly trivial: ŷ = x̂. The first argument goes as fol-
lows:

f1(g)eŷ = f1
(
gex̂)

g−1heŷ =
(
gex̂)−1

h = e(−x̂)g−1h

eŷ =
(
h−1g

)
e(−x̂) (h−1g

)−1
= e

Ad(h−1g)(−x̂)

ŷ = Ad(h−1g) (−x̂) = Adbetween(h,g) (−x̂) (5)

Hence, now we undo h and then apply the inverse (−x̂) in the g frame.

3 Derivatives of Actions
The (usual) action of an n-dimensional matrix group G is matrix-vector multiplication on Rn,

q = T p

3



with p,q ∈ Rn and T ∈ GL(n). Let us first do away with the derivative in p, which is easy:

∂ (T p)
∂ p

= T

We would now like to know what an incremental action x̂ would do, through the exponential map

q(x) = Tex̂ p

with derivative
∂q(x)

∂x
= T

∂

∂x

(
ex̂ p

)
Since the matrix exponential is given by the series

eA = I +A+
A2

2!
+

A3

3!
+ . . .

we have, to first order
ex̂ p = p+ x̂p+ . . .

and the derivative of an incremental action x at the origin is

Hp
∆=

∂ex̂ p
∂x

=
∂ (x̂p)

∂x

Recalling the definition (1) of the map x→ x̂, we can calculate x̂p as (using tensor notation)

(x̂p) jk = Gi
jkxi pk

and hence the derivative is
(Hp)

i
j = Gi

jk pk

and the final derivative becomes
∂q(x)

∂x
= T Hp

4 3D Rotations

4.1 Basics
The Lie group SO(3) is a subgroup of the general linear group GL(3) of 3×3 invertible matrices.
Its Lie algebra so(3) is the vector space of 3×3 skew-symmetric matrices. The exponential map
can be computed in closed form using Rodrigues’ formula.

Since SO(3) is a three-dimensional manifold, so(3) is isomorphic to R3 and we define the map

ˆ: R3 → so(3)

ˆ: ω → ω̂ = [ω]×

4



which maps 3-vectors ω to skew-symmetric matrices [ω]× :

[ω]× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 = ωxGx +ωyGy +ωzGz

where the Gi are the generators for SO(3),

Gx =

 0 0 0
0 0 −1
0 1 0

Gy =

 0 0 1
0 0 0
−1 0 0

 Gz =

 0 −1 0
1 0 0
0 0 0


corresponding to a rotation around X , Y , and Z, respectively. The Lie bracket [x,y] corresponds to
the cross product x× y in R3.

For every 3−vector ω there is a corresponding rotation matrix

R = e[ω]×

and this is defines the canonical parameterization of SO(3), with ω known as the canonical or
exponential coordinates. It is equivalent to the axis-angle representation for rotations, where the
unit vector ω/‖ω‖ defines the rotation axis, and its magnitude the amount of rotation θ .

4.2 The Adjoint Map
We can prove the following identity for rotation matrices R,

R[ω]×RT = R[ω]×
[

a1 a2 a3
]

= R
[

ω×a1 ω×a2 ω×a3
]

=

 a1(ω×a1) a1(ω×a2) a1(ω×a3)
a2(ω×a1) a2(ω×a2) a2(ω×a3)
a3(ω×a1) a3(ω×a2) a3(ω×a3)


=

 ω(a1×a1) ω(a2×a1) ω(a3×a1)
ω(a1×a2) ω(a2×a2) ω(a3×a2)
ω(a1×a3) ω(a2×a3) ω(a3×a3)


=

 0 −ωa3 ωa2
ωa3 0 −ωa1
−ωa2 ωa1 0


= [Rω]× (6)

where a1, a2, and a3 are the rows of R. Above we made use of the orthogonality of rotation matrices
and the triple product rule:

a(b× c) = b(c×a) = c(a×b)

Hence, given property (6), the adjoint map for so(3) simplifies to

AdR[ω]× = R[ω]×RT = [Rω]×

and this can be expressed in exponential coordinates simply by rotating the axis ω to Rω .
As an example, to apply an axis-angle rotation ω to a point p in the frame R, we could:

5



1. First transform p back to the world frame, apply ω , and then rotate back:

q = Re[ω]×RT

2. Immediately apply the transformed axis-angle transformation AdR[ω]× = [Rω]×:

q = e[Rω]× p

4.3 Derivatives of Mappings
Hence, we are now in a position to simply posit the derivative of inverse,

[ω ′]× = AdR ([−ω]×) = [R(−ω)]×
∂RT

∂ω
= −R

compose in its first argument,

[ω ′]× = AdRT
2
([ω]×) = [RT

2 ω]×
∂ (R1R2)

∂ω1
= RT

2

compose in its second argument,

∂ (R1R2)
∂ω2

= I3

between in its first argument,

[ω ′]× = AdRT
2 R1

([−ω]×) = [RT
2 R1(−ω)]×

∂
(
RT

1 R2
)

∂ω1
= −RT

2 R1 =−between(R2,R1)

and between in its second argument,

∂
(
RT

1 R2
)

∂ω2
= I3

4.4 Derivatives of Actions
In the case of SO(3) the vector space is R3, and the group action corresponds to rotating a point

q = Rp

We would now like to know what an incremental rotation parameterized by ω would do:

q(ω) = Re[ω]× p

6



hence the derivative (following the exposition in Section 3):

∂q(ω)
∂ω

= R
∂

∂ω

(
e[ω]× p

)
= R

∂

∂ω
([ω]×p) = RHp

To calculate Hp we make use of

[ω]×p = ω× p =−p×ω = [−p]×ω

Hence, the final derivative of an action in its first argument is

∂q(ω)
∂ω

= RHp = R[−p]×

5 3D Rigid Transformations
The Lie group SE(3) is a subgroup of the general linear group GL(4) of 4×4 invertible matrices
of the form

T ∆=
[

R t
0 1

]
where R ∈ SO(3) is a rotation matrix and t ∈ R3 is a translation vector. Its Lie algebra se(3) is the
vector space of 4×4 twists ξ̂ parameterized by the twist coordinates ξ ∈R6, with the mapping [1]

ξ
∆=

[
ω

v

]
→ ξ̂

∆=
[

[ω]× v
0 0

]
Note we follow Frank Park’s convention and reserve the first three components for rotation, and
the last three for translation. Hence, with this parameterization, the generators for SE(3) are

G1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

G2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 G3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



G4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

G5 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 G6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


Applying the exponential map to a twist ξ yields a screw motion yielding an element in SE(3):

T = exp ξ̂

A closed form solution for the exponential map is given in [1, page 42].

7



5.1 The Adjoint Map
The adjoint is

AdT ξ̂ = T ξ̂ T−1

=
[

R t
0 1

][
[ω]× v

0 0

][
RT −RT t
0 1

]
=

[
[Rω]× −[Rω]×t +Rv

0 0

]
=

[
[Rω]× t×Rω +Rv

0 0

]
From this we can express the Adjoint map in terms of twist coordinates (see also [1] and FP):[

ω ′

v′

]
=

[
R 0

[t]×R R

][
ω

v

]

5.2 Derivatives of Mappings
Hence, as with SO(3), we are now in a position to simply posit the derivative of inverse,

∂T−1

∂ξ
= −

[
R 0

[t]×R R

]
(but unit test on the above fails !!!), compose in its first argument,

∂ (T1T2)
∂ξ1

=
[

RT
2 0

[−RT
2 t]×RT

2 RT
2

]
compose in its second argument,

∂ (T1T2)
∂ξ2

= I6

between in its first argument,

∂

(
T
−1

1 T2

)
∂ξ1

= −
[

R 0
[t]×R R

]
with [

R t
0 1

]
= T

−1

1 T2 = between(T2,T1)

and between in its second argument,

∂

(
T
−1

1 T2

)
∂ξ1

= I6

8



5.3 The derivatives of Actions
The action of SE(3) on 3D points is done by embedding the points in R4 by using homogeneous
coordinates

q̂ =
[

q
1

]
=

[
R t
0 1

][
p
1

]
= T p̂

We would now like to know what an incremental rotation parameterized by ξ would do:

q̂(ξ ) = Teξ̂ p̂

hence the derivative (following the exposition in Section 3):

∂ q̂(ξ )
∂ξ

= T
∂

∂ξ

(
ξ̂ p̂

)
= T Hp

where ξ̂ p̂ corresponds to a velocity in R4 (in the local T frame):

ξ̂ p̂ =
[

[ω]× v
0 0

][
p
1

]
=

[
ω× p+ v

0

]
Notice how velocities are anologous to points at infinity in projective geometry: they correspond
to free vectors indicating a direction and magnitude of change.

By only taking the top three rows, we can write this as a velocity in R3, as the product of a
3×6 matrix Hp that acts upon the exponential coordinates ξ directly:

ω× p+ v =−p×ω + v =
[
−[p]× I3

][
ω

v

]
= Hpξ

Hence, the final derivative of the group action is

∂ q̂(ξ )
∂ξ

= T Ĥp =
[

R t
0 1

][
[−p]× I3

0 0

]
in homogenous coordinates. In R3 this becomes:

∂q(ξ )
∂ξ

= R
[
−[p]× I3

]
6 2D Rotations
The Lie group SO(2) is a subgroup of the general linear group GL(2) of 2×2 invertible matrices.
Its Lie algebra so(2) is the vector space of 2× 2 skew-symmetric matrices. Though simpler than
SO(3) it is commutative and hence things simplify in ways that do not generalize well, so we treat
it only now. Since SO(2) is a one-dimensional manifold, so(2) is isomorphic to R and we define

ˆ: R→ so(2)

ˆ: θ → θ̂ = [θ ]+

9



which maps the angle θ to the 2×2 skew-symmetric matrix [θ ]+:

[θ ]+ =
[

0 −θ

θ 0

]
The exponential map can be computed in closed form as

R = e[θ ]+ =
[

cosθ −sinθ

sinθ cosθ

]

6.1 Derivatives of Mappings
The adjoint map for so(2) is trivially equal to the identity, as is the case for all commutative groups,
and we have the derivative of inverse,

∂RT

∂θ
= −AdR =−1

compose in its first argument,

∂ (R1R2)
∂θ1

= AdRT
2

= 1

compose in its second argument,

∂ (R1R2)
∂θ2

= 1

between in its first argument,

∂
(
RT

1 R2
)

∂θ1
= −AdRT

2 R1
=−1

and between in its second argument,

∂
(
RT

1 R2
)

∂θ2
= 1

6.2 Derivatives of Actions
In the case of SO(2) the vector space is R2, and the group action corresponds to rotating a point

q = Rp

We would now like to know what an incremental rotation parameterized by θ would do:

q(θ) = Re[θ ]+ p

hence the derivative (following the exposition in Section 3):

∂q(ω)
∂ω

= R
∂

∂ω

(
e[θ ]+ p

)
= R

∂

∂ω
([θ ]+p) = RHp

10



Note that

[θ ]+

[
x
y

]
= θRπ/2

[
x
y

]
= θ

[
−y
x

]
(7)

which acts like a restricted “cross product” in the plane. Hence

[θ ]+p =
[
−y
x

]
θ = Hpθ

with Hp = Rpi/2 p. Hence, the final derivative of an action in its first argument is

∂q(θ)
∂θ

= RHp = RRpi/2 p = Rpi/2Rp = Rpi/2q

7 2D Rigid Transformations
The Lie group SE(2) is a subgroup of the general linear group GL(3) of 3×3 invertible matrices
of the form

T ∆=
[

R t
0 1

]
where R ∈ SO(2) is a rotation matrix and t ∈ R2 is a translation vector. Its Lie algebra se(2) is the
vector space of 3×3 twists ξ̂ parameterized by the twist coordinates ξ ∈ R3, with the mapping

ξ
∆=

[
v
ω

]
→ ξ̂

∆=
[

[ω]+ v
0 0

]
Note we think of robots as having a pose (x,y,θ) and hence I switched the order above, reserving
the first two components for translation and the last for rotation. The Lie group generators are

Gx =

 0 0 1
0 0 0
0 0 0

 Gy =

 0 0 0
0 0 1
0 0 0

 Gθ =

 0 −1 0
1 0 0
0 0 0


Applying the exponential map to a twist ξ yields a screw motion yielding an element in SE(2):

T = exp ξ̂

A closed form solution for the exponential map is in the works...

7.1 The Adjoint Map
The adjoint is

AdT ξ̂ = T ξ̂ T−1

=
[

R t
0 1

][
[ω]+ v

0 0

][
RT −RT t
0 1

]
=

[
[ω]+ −[ω]+t +Rv

0 0

]
=

[
[ω]+ Rv−ωRπ/2t

0 0

]
11



From this we can express the Adjoint map in terms of plane twist coordinates:[
v′

ω ′

]
=

[
R −Rπ/2t
0 1

][
v
ω

]

7.2 Derivatives of Mappings
We can just define all derivatives in terms of the above adjoint map:

∂T
−1

∂ξ
= −AdT

∂ (T1T2)
∂ξ1

= Ad
T−1

2
= 1 and

∂ (T1T2)
∂ξ2

= I3

∂
(
T−1

1 T2
)

∂ξ1
= −Ad

T−1
2 T1

=−Adbetween(T2,T1) and
∂

(
T−1

1 T2
)

∂ξ2
= I3

7.3 The derivatives of Actions
The action of SE(2) on 2D points is done by embedding the points in R3 by using homogeneous
coordinates

q̂ =
[

q
1

]
=

[
R t
0 1

][
p
1

]
= T p̂

Analoguous to SE(3), we can compute a velocity ξ̂ p̂ in the local T frame:

ξ̂ p̂ =
[

[ω]+ v
0 0

][
p
1

]
=

[
[ω]+p+ v

0

]
By only taking the top two rows, we can write this as a velocity in R2, as the product of a 2× 3
matrix Hp that acts upon the exponential coordinates ξ directly:

[ω]+p+ v = v+Rpi/2 pω =
[

I2 Rpi/2 p
][

v
ω

]
= Hpξ

Hence, the final derivative of the group action is

∂q(ξ )
∂ξ

= R
[

I2 Rpi/2 p
]
=

[
R Rpi/2q

]

12



8 Rot2 (in gtsam)
A rotation is stored as (cosθ ,sinθ). An incremental rotation is applied using the trigonometric
sum rule:

cosθ
′ = cosθ cosδ − sinθ sinδ

sinθ
′ = sinθ cosδ + cosθ sinδ

where δ is an incremental rotation angle.
Derivatives of unrotate

∂x′

∂δ
=

∂ (xcosθ ′+ ysinθ ′)
∂δ

=
∂ (x(cosθ cosδ − sinθ sinδ )+ y(sinθ cosδ + cosθ sinδ ))

∂δ

= x(−cosθ sinδ − sinθ cosδ )+ y(−sinθ sinδ + cosθ cosδ )
= −xsinθ + ycosθ = y′

∂y′

∂δ
=

∂ (−xsinθ ′+ ycosθ ′)
∂δ

=
∂ (−x(sinθ cosδ + cosθ sinδ )+ y(cosθ cosδ − sinθ sinδ ))

∂δ

= −x(−sinθ sinδ + cosθ cosδ )+ y(−cosθ sinδ − sinθ cosδ )
= −xcosθ − ysinθ =−x′

∂ p′

∂ p
=

∂ (Rp)
∂ p

= R

9 Point3
A cross product a×b can be written as a matrix multiplication

a×b = [a]×b

where [a]× is a skew-symmetric matrix defined as

[x,y,z]× =

 0 −z y
z 0 −x
−y x 0


We also have

aT [b]× =−([b]×a)T =−(a×b)T

The derivative of a cross product
∂ (a×b)

∂a
= [−b]× (8)

∂ (a×b)
∂b

= [a]× (9)

13



10 Pose3 (gtsam, old-style exmap)
In the old-style, we have

R′ = R(I +Ω)
t ′ = t +dt
In this case, the derivative of transform_from, Rx+ t:

∂ (R(I +Ω)x+ t)
∂ω

=
∂ (RΩx)

∂ω
=

∂ (R(ω× x))
∂ω

= R[−x]×

and with respect to dt is easy:

∂ (Rx+ t +dt)
∂dt

= I

The derivative of transform_to, inv(R)(x− t) we can obtain using the chain rule:

∂ (inv(R)(x− t))
∂ω

=
∂unrot(R,(x− t))

∂ω
= skew(RT (x− t))

and with respect to dt is easy:

∂ (RT (x− t−dt))
∂dt

=−RT

11 Pose3 (gtsam, new-style exmap)
In the new-style exponential map, Pose3 is composed with a delta pose as follows

R′ = (I +Ω)R
t ′ = (I +Ω)t +dt
The derivative of transform_from, Rx+ t:

∂ ((I +Ω)Rx+(I +Ω)t)
∂ω

=
∂ (Ω(Rx+ t))

∂ω
=

∂ (ω× (Rx+ t))
∂ω

=−[Rx+ t]×

and with respect to dt is easy:

∂ (Rx+ t +dt)
∂dt

= I

The derivative of transform_to, RT (x− t), eludes me. The calculation below is just an attempt:
Noting that R′T = RT (I−Ω), and (I−Ω)(x− (I + Ω)t) = (I−Ω)(x− t−Ωt) = x− t− dt−

Ωx+Ω2t

∂ (R′T (x− t ′))
∂ω

=
∂ (RT (I−Ω)(x− (I +Ω)t))

∂ω
=−∂ (RT (Ω(x−Ωt)))

∂ω

−∂ ([RT ω]×RT x)
∂ω

= [RT x]×
∂ (RT ω)

∂ω
= [RT x]×RT

=
∂ (RT Ω2t)

∂ω
+[RT x]×RT

14



and with respect to dt is easy:

∂ (RT (x− t−dt))
∂dt

=−RT

12 Line3vd
One representation of a line is through 2 vectors (v,d), where v is the direction and the vector d
points from the orgin to the closest point on the line.

In this representation, transforming a 3D line from a world coordinate frame to a camera at
(Rc

w, tw) is done by
vc = Rc

wvw

dc = Rc
w (dw +(twvw)vw− tw)

13 Line3
For 3D lines, we use a parameterization due to C.J. Taylor, using a rotation matrix R and 2 scalars
a and b. The line direction v is simply the Z-axis of the rotated frame, i.e., v = R3, while the vector
d is given by d = aR1 +bR2.

Now, we will not use the incremental rotation scheme we used for rotations: because the matrix
R translates from the line coordinate frame to the world frame, we need to apply the incremental
rotation on the right-side:

R′ = R(I +Ω)

Projecting a line to 2D can be done easily, as both v and d are also the 2D homogenous coordinates
of two points on the projected line, and hence we have

l = v×d
= R3× (aR1 +bR2)
= a(R3×R1)+b(R3×R2)
= aR2−bR1

This can be written as a rotation of a point,

l = R

 −b
a
0


but because the incremental rotation is now done on the right, we need to figure out the derivatives
again:

∂ (R(I +Ω)x)
∂ω

=
∂ (RΩx)

∂ω
= R

∂ (Ωx)
∂ω

= R[−x]× (10)

and hence the derivative of the projection l with respect to the rotation matrix Rof the 3D line is

∂ (l)
∂ω

= R[

 b
−a
0

]× =
[

aR3 bR3 −(aR1 +bR2)
]

(11)

15



or the a,b scalars:
∂ (l)
∂a

= R2

∂ (l)
∂b

=−R1

Transforming a 3D line (R,(a,b)) from a world coordinate frame to a camera frame (Rc
w, tw) is

done by

R′ = Rc
wR

a′ = a−RT
1 tw

b′ = b−RT
2 tw

Again, we need to redo the derivatives, as R is incremented from the right. The first argument is
incremented from the left, but the result is incremented on the right:

R′(I +Ω
′) = (AB)(I +Ω

′) = (I +[Sω]×)AB
I +Ω

′ = (AB)T (I +[Sω]×)(AB)
Ω
′ = R′T [Sω]×R′

Ω
′ = [R′T Sω]×

ω
′ = R′T Sω

For the second argument R we now simply have:

AB(I +Ω
′) = AB(I +Ω)

Ω
′ = Ω

ω
′ = ω

The scalar derivatives can be found by realizing that a′

b′

...

 =

 a
b
0

−RT tw

where we don’t care about the third row. Hence

∂ ((R(I +Ω2))
T tw)

∂ω
=−∂ (Ω2RT tw)

∂ω
=−[RT tw]× =

 0 RT
3 tw −RT

2 tw

−RT
3 tw 0 RT

1 tw

... ... 0


14 2D Line Segments
The error between an infinite line (a,b,c) and a 2D line segment ((x1,y1),(x2,y2)) is defined in
Line3.ml.

16



15 Recovering Pose
Below is the explanaition underlying Pose3.align, i.e. aligning two point clouds using SVD. In-
spired but modified from CVOnline...

Our model is
pc = R(pw− t)

i.e., R is from camera to world, and t is the camera location in world coordinates. The objective
function is

1
2 ∑(pc−R(pw− t))2 =

1
2 ∑(pc−Rpw +Rt)2 =

1
2 ∑

(
pc−Rpw− t ′

)2 (12)

where t ′ =−Rt is the location of the origin in the camera frame. Taking the derivative with respect
to t ′ and setting to zero we have

∑
(

pc−Rpw− t ′
)

= 0

or
t ′ =

1
n ∑(pc−Rpw) = p̄c−Rp̄w (13)

here p̄c and p̄w are the point cloud centroids. Substituting back into (12), we get

1
2 ∑(pc−R(pw− t))2 =

1
2 ∑((pc− p̄c)−R(pw− p̄w))2 =

1
2 ∑(p̂c−Rp̂w)2

Now, to minimize the above it suffices to maximize (see CVOnline)

trace
(
RTC

)
where C = ∑ p̂c (p̂w)T is the correlation matrix. Intuitively, the cloud of points is rotated to align
with the principal axes. This can be achieved by SVD decomposition on C

C = USV T

and setting
R = UV T

Clearly, from (13) we then also recover the optimal t as

t = p̄w−RT p̄c

References
[1] R.M. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robotic Manipulation.

CRC Press, 1994.

17


