% create a linear factor graph % The non-linear graph above evaluated at NoisyConfig function fg = createGaussianFactorGraph() c = createNoisyConfig(); % Create fg = GaussianFactorGraph; sigma1=.1; % prior on x1 A11=eye(2); b = - c.get('x1'); <<<<<<< .mine f1 = LinearFactor('x1', A11, b, sigma1); ======= f1 = GaussianFactor('x1', A11, b); >>>>>>> .r1017 fg.push_back(f1); % odometry between x1 and x2 sigma2=.1; <<<<<<< .mine A21=-eye(2); A22=eye(2); b = [.2;-.1]; f2 = LinearFactor('x1', A21, 'x2', A22, b,sigma2); ======= f2 = GaussianFactor('x1', A21, 'x2', A22, b); >>>>>>> .r1017 fg.push_back(f2); % measurement between x1 and l1 sigma3=.2; A31=-eye(2); A33=eye(2); b = [0;.2]; <<<<<<< .mine f3 = LinearFactor('x1', A31, 'l1', A33, b,sigma3); ======= f3 = GaussianFactor('x1', A31, 'l1', A32, b); >>>>>>> .r1017 fg.push_back(f3); % measurement between x2 and l1 sigma4=.2; A42=-eye(2); A43=eye(2); b = [-.2;.3]; <<<<<<< .mine f4 = LinearFactor('x2', A42, 'l1', A43, b,sigma4); ======= f4 = GaussianFactor('x2', A41, 'l1', A42, b); >>>>>>> .r1017 fg.push_back(f4); end