""" GTSAM Copyright 2010-2018, Georgia Tech Research Corporation, Atlanta, Georgia 30332-0415 All Rights Reserved Authors: Frank Dellaert, et al. (see THANKS for the full author list) See LICENSE for the license information Simple robot motion example, with prior and two odometry measurements Author: Frank Dellaert """ # pylint: disable=invalid-name, E1101 from __future__ import print_function import numpy as np import gtsam import matplotlib.pyplot as plt import gtsam.utils.plot as gtsam_plot # Create noise models ODOMETRY_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1])) PRIOR_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1])) # Create an empty nonlinear factor graph graph = gtsam.NonlinearFactorGraph() # Add a prior on the first pose, setting it to the origin # A prior factor consists of a mean and a noise model (covariance matrix) priorMean = gtsam.Pose2(0.0, 0.0, 0.0) # prior at origin graph.add(gtsam.PriorFactorPose2(1, priorMean, PRIOR_NOISE)) # Add odometry factors odometry = gtsam.Pose2(2.0, 0.0, 0.0) # For simplicity, we will use the same noise model for each odometry factor # Create odometry (Between) factors between consecutive poses graph.add(gtsam.BetweenFactorPose2(1, 2, odometry, ODOMETRY_NOISE)) graph.add(gtsam.BetweenFactorPose2(2, 3, odometry, ODOMETRY_NOISE)) print("\nFactor Graph:\n{}".format(graph)) # Create the data structure to hold the initialEstimate estimate to the solution # For illustrative purposes, these have been deliberately set to incorrect values initial = gtsam.Values() initial.insert(1, gtsam.Pose2(0.5, 0.0, 0.2)) initial.insert(2, gtsam.Pose2(2.3, 0.1, -0.2)) initial.insert(3, gtsam.Pose2(4.1, 0.1, 0.1)) print("\nInitial Estimate:\n{}".format(initial)) # optimize using Levenberg-Marquardt optimization params = gtsam.LevenbergMarquardtParams() optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params) result = optimizer.optimize() print("\nFinal Result:\n{}".format(result)) # 5. Calculate and print marginal covariances for all variables marginals = gtsam.Marginals(graph, result) for i in range(1, 4): print("X{} covariance:\n{}\n".format(i, marginals.marginalCovariance(i))) fig = plt.figure(0) for i in range(1, 4): gtsam_plot.plot_pose2(0, result.atPose2(i), 0.5, marginals.marginalCovariance(i)) plt.axis('equal') plt.show()