% /* ---------------------------------------------------------------------------- % % * GTSAM Copyright 2010, Georgia Tech Research Corporation, % * Atlanta, Georgia 30332-0415 % * All Rights Reserved % * Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % * See LICENSE for the license information % % * -------------------------------------------------------------------------- */ % % /** % * @file testKalmanFilter.cpp % * @brief Test simple linear Kalman filter on a moving 2D point % * @date Sep 3, 2011 % * @author Stephen Williams % * @author Frank Dellaert % * @author Richard Roberts % */ %% Create the controls and measurement properties for our example F = eye(2,2); B = eye(2,2); u = [1.0; 0.0]; modelQ = SharedDiagonal([0.1;0.1]); Q = 0.01*eye(2,2); H = eye(2,2); z1 = [1.0, 0.0]'; z2 = [2.0, 0.0]'; z3 = [3.0, 0.0]'; modelR = SharedDiagonal([0.1;0.1]); R = 0.01*eye(2,2); %% Create the set of expected output TestValues expected0 = [0.0, 0.0]'; P00 = 0.01*eye(2,2); expected1 = [1.0, 0.0]'; P01 = P00 + Q; I11 = inv(P01) + inv(R); expected2 = [2.0, 0.0]'; P12 = inv(I11) + Q; I22 = inv(P12) + inv(R); expected3 = [3.0, 0.0]'; P23 = inv(I22) + Q; I33 = inv(P23) + inv(R); %% Create an KalmanFilter object KF = KalmanFilter(2); %% Create the Kalman Filter initialization point x_initial = [0.0;0.0]; P_initial = 0.01*eye(2); %% Create an KF object state = KF.init(x_initial, P_initial); EQUALITY('expected0,state.mean', expected0,state.mean); EQUALITY('expected0,state.mean', P00,state.covariance); %% Run iteration 1 state = KF.predict(state,F, B, u, modelQ); EQUALITY('expected1,state.mean', expected1,state.mean); EQUALITY('P01,state.covariance', P01,state.covariance); state = KF.update(state,H,z1,modelR); EQUALITY('expected1,state.mean', expected1,state.mean); EQUALITY('I11,state.information', I11,state.information); %% Run iteration 2 state = KF.predict(state,F, B, u, modelQ); EQUALITY('expected2,state.mean', expected2,state.mean); state = KF.update(state,H,z2,modelR); EQUALITY('expected2,state.mean', expected2,state.mean); %% Run iteration 3 state = KF.predict(state,F, B, u, modelQ); EQUALITY('expected3,state.mean', expected3,state.mean); state = KF.update(state,H,z3,modelR); EQUALITY('expected3,state.mean', expected3,state.mean);