import gtsam.*; % Test GTSAM covariances on a graph with betweenFactors % Optionally, you can also enable IMU factors and Camera factors % Authors: Luca Carlone, David Jensen % Date: 2014/4/6 clc clear all close all %% Configuration options.useRealData = 0; % controls whether or not to use the real data (if available) as the ground truth traj options.includeBetweenFactors = 1; % if true, BetweenFactors will be generated between consecutive poses options.includeIMUFactors = 0; % if true, IMU type 1 Factors will be generated for the trajectory options.includeCameraFactors = 0; % not fully implemented yet options.trajectoryLength = 4; % length of the ground truth trajectory options.subsampleStep = 20; numMonteCarloRuns = 2; %% Camera metadata numberOfLandmarks = 10; % Total number of visual landmarks, used for camera factors K = Cal3_S2(500,500,0,640/2,480/2); % Camera calibration cameraMeasurementNoiseSigma = 1.0; cameraMeasurementNoise = noiseModel.Isotropic.Sigma(2,cameraMeasurementNoiseSigma); % Create landmarks if options.includeCameraFactors == 1 for i = 1:numberOfLandmarks gtLandmarkPoints(i) = Point3( ... ... % uniformly distributed in the x axis along 120% of the trajectory length, starting after 15 poses [rand()*20*(options.trajectoryLength*1.2) + 15*20; ... randn()*20; ... % normally distributed in the y axis with a sigma of 20 randn()*20]); % normally distributed in the z axis with a sigma of 20 end end %% Imu metadata metadata.imu.epsBias = 1e-10; % was 1e-7 metadata.imu.zeroBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1)); metadata.imu.AccelerometerSigma = 1e-5; metadata.imu.GyroscopeSigma = 1e-7; metadata.imu.IntegrationSigma = 1e-4; metadata.imu.BiasAccelerometerSigma = metadata.imu.epsBias; metadata.imu.BiasGyroscopeSigma = metadata.imu.epsBias; metadata.imu.BiasAccOmegaInit = metadata.imu.epsBias; metadata.imu.g = [0;0;0]; metadata.imu.omegaCoriolis = [0;0;0]; noiseVel = noiseModel.Isotropic.Sigma(3, 1e-2); % was 0.1 noiseBias = noiseModel.Isotropic.Sigma(6, metadata.imu.epsBias); noisePriorBias = noiseModel.Isotropic.Sigma(6, 1e-4); %% Between metadata sigma_ang = 1e-2; sigma_cart = 1; noiseVectorPose = [sigma_ang; sigma_ang; sigma_ang; sigma_cart; sigma_cart; sigma_cart]; noisePose = noiseModel.Diagonal.Sigmas(noiseVectorPose); %noisePose = noiseModel.Isotropic.Sigma(6, 1e-3); %% Set log files testName = sprintf('sa-%1.2g-sc-%1.2g',sigma_ang,sigma_cart) folderName = 'results/' %% Create ground truth trajectory and measurements [gtValues, gtMeasurements] = imuSimulator.covarianceAnalysisCreateTrajectory(options, metadata); %% Create ground truth graph % Set up noise models gtNoiseModels.noisePose = noisePose; gtNoiseModels.noiseVel = noiseVel; gtNoiseModels.noiseBias = noiseBias; gtNoiseModels.noisePriorPose = noisePose; gtNoiseModels.noisePriorBias = noisePriorBias; % Set measurement noise to 0, because this is ground truth gtMeasurementNoise.poseNoiseVector = [0 0 0 0 0 0]; gtMeasurementNoise.imu.accelNoiseVector = [0 0 0]; gtMeasurementNoise.imu.gyroNoiseVector = [0 0 0]; gtMeasurementNoise.cameraPixelNoiseVector = [0 0]; [gtGraph, gtValues] = imuSimulator.covarianceAnalysisCreateFactorGraph( ... gtMeasurements, ... % ground truth measurements gtValues, ... % ground truth Values gtNoiseModels, ... % noise models to use in this graph gtMeasurementNoise, ... % noise to apply to measurements options, ... % options for the graph (e.g. which factors to include) metadata); % misc data necessary for factor creation %% Display, printing, and plotting of ground truth %gtGraph.print(sprintf('\nGround Truth Factor graph:\n')); %gtValues.print(sprintf('\nGround Truth Values:\n ')); warning('Additional prior on zerobias') warning('Additional PriorFactorLieVector on velocities') figure(1) hold on; plot3DPoints(gtValues); plot3DTrajectory(gtValues, '-r', [], 1, Marginals(gtGraph, gtValues)); axis equal disp('Plotted ground truth') %% Monte Carlo Runs for k=1:numMonteCarloRuns fprintf('Monte Carlo Run %d.\n', k'); % create a new graph graph = NonlinearFactorGraph; % noisy prior currentPoseKey = symbol('x', 0); currentPose = gtValues.at(currentPoseKey); gtMeasurements.posePrior = currentPose; noisyDelta = noiseVectorPose .* randn(6,1); noisyInitialPose = Pose3.Expmap(noisyDelta); graph.add(PriorFactorPose3(currentPoseKey, noisyInitialPose, noisePose)); for i=1:size(gtMeasurements.deltaMatrix,1) currentPoseKey = symbol('x', i); % for each measurement: add noise and add to graph noisyDelta = gtMeasurements.deltaMatrix(i,:)' + (noiseVectorPose .* randn(6,1)); noisyDeltaPose = Pose3.Expmap(noisyDelta); % Add the factors to the factor graph graph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, noisyDeltaPose, noisePose)); end graph.print('graph') % optimize optimizer = GaussNewtonOptimizer(graph, gtValues); estimate = optimizer.optimize(); figure(1) plot3DTrajectory(estimate, '-b'); marginals = Marginals(graph, estimate); % for each pose in the trajectory for i=1:size(gtMeasurements.deltaMatrix,1)+1 % compute estimation errors currentPoseKey = symbol('x', i-1); gtPosition = gtValues.at(currentPoseKey).translation.vector; estPosition = estimate.at(currentPoseKey).translation.vector; estR = estimate.at(currentPoseKey).rotation.matrix; errPosition = estPosition - gtPosition; % compute covariances: cov = marginals.marginalCovariance(currentPoseKey); covPosition = estR * cov(4:6,4:6) * estR'; % compute NEES using (estimationError = estimatedValues - gtValues) and estimated covariances NEES(k,i) = errPosition' * inv(covPosition) * errPosition; % distributed according to a Chi square with n = 3 dof end figure(2) hold on plot(NEES(k,:),'-b','LineWidth',1.5) end %% ANEES = mean(NEES); plot(ANEES,'-r','LineWidth',2) plot(3*ones(size(ANEES,2),1),'k--'); % Expectation(ANEES) = number of dof box on set(gca,'Fontsize',16) title('NEES and ANEES'); %print('-djpeg', horzcat('runs-',testName)); saveas(gcf,horzcat(folderName,'runs-',testName,'.fig'),'fig'); %% figure(1) box on set(gca,'Fontsize',16) title('Ground truth and estimates for each MC runs'); %print('-djpeg', horzcat('gt-',testName)); saveas(gcf,horzcat(folderName,'gt-',testName,'.fig'),'fig'); %% Let us compute statistics on the overall NEES n = 3; % position vector dimension N = numMonteCarloRuns; % number of runs alpha = 0.01; % confidence level % mean_value = n*N; % mean value of the Chi-square distribution % (we divide by n * N and for this reason we expect ANEES around 1) r1 = chi2inv(alpha, n * N) / (n * N); r2 = chi2inv(1-alpha, n * N) / (n * N); % output here fprintf(1, 'r1 = %g\n', r1); fprintf(1, 'r2 = %g\n', r2); figure(3) hold on plot(ANEES/n,'-b','LineWidth',2) plot(ones(size(ANEES,2),1),'r-'); plot(r1*ones(size(ANEES,2),1),'k-.'); plot(r2*ones(size(ANEES,2),1),'k-.'); box on set(gca,'Fontsize',16) title('NEES normalized by dof VS bounds'); %print('-djpeg', horzcat('ANEES-',testName)); saveas(gcf,horzcat(folderName,'ANEES-',testName,'.fig'),'fig'); logFile = horzcat(folderName,'log-',testName); save(logFile) %% NEES COMPUTATION (Bar-Shalom 2001, Section 5.4) % the nees for a single experiment (i) is defined as % NEES_i = xtilda' * inv(P) * xtilda, % where xtilda in R^n is the estimation % error, and P is the covariance estimated by the approach we want to test % % Average NEES. Given N Monte Carlo simulations, i=1,...,N, the average % NEES is: % ANEES = sum(NEES_i)/N % The quantity N*ANEES is distributed according to a Chi-square % distribution with N*n degrees of freedom. % % For the single run case, N=1, therefore NEES = ANEES is distributed % according to a chi-square distribution with n degrees of freedom (e.g. n=3 % if we are testing a position estimate) % Therefore its mean should be n (difficult to see from a single run) % and, with probability alpha, it should hold: % % NEES in [r1, r2] % % where r1 and r2 are built from the Chi-square distribution