from __future__ import print_function import gtsam import math import numpy as np def Vector3(x, y, z): return np.array([x, y, z]) # 1. Create a factor graph container and add factors to it graph = gtsam.NonlinearFactorGraph() # 2a. Add a prior on the first pose, setting it to the origin # A prior factor consists of a mean and a noise model (covariance matrix) priorNoise = gtsam.noiseModel.Diagonal.Sigmas(Vector3(0.3, 0.3, 0.1)) graph.add(gtsam.PriorFactorPose2(1, gtsam.Pose2(0, 0, 0), priorNoise)) # For simplicity, we will use the same noise model for odometry and loop closures model = gtsam.noiseModel.Diagonal.Sigmas(Vector3(0.2, 0.2, 0.1)) # 2b. Add odometry factors # Create odometry (Between) factors between consecutive poses graph.add(gtsam.BetweenFactorPose2(1, 2, gtsam.Pose2(2, 0, 0), model)) graph.add(gtsam.BetweenFactorPose2(2, 3, gtsam.Pose2(2, 0, math.pi / 2), model)) graph.add(gtsam.BetweenFactorPose2(3, 4, gtsam.Pose2(2, 0, math.pi / 2), model)) graph.add(gtsam.BetweenFactorPose2(4, 5, gtsam.Pose2(2, 0, math.pi / 2), model)) # 2c. Add the loop closure constraint # This factor encodes the fact that we have returned to the same pose. In real # systems, these constraints may be identified in many ways, such as appearance-based # techniques with camera images. We will use another Between Factor to enforce this constraint: graph.add(gtsam.BetweenFactorPose2(5, 2, gtsam.Pose2(2, 0, math.pi / 2), model)) graph.print("\nFactor Graph:\n") # print # 3. Create the data structure to hold the initialEstimate estimate to the # solution. For illustrative purposes, these have been deliberately set to incorrect values initialEstimate = gtsam.Values() initialEstimate.insert(1, gtsam.Pose2(0.5, 0.0, 0.2)) initialEstimate.insert(2, gtsam.Pose2(2.3, 0.1, -0.2)) initialEstimate.insert(3, gtsam.Pose2(4.1, 0.1, math.pi / 2)) initialEstimate.insert(4, gtsam.Pose2(4.0, 2.0, math.pi)) initialEstimate.insert(5, gtsam.Pose2(2.1, 2.1, -math.pi / 2)) initialEstimate.print("\nInitial Estimate:\n") # print # 4. Optimize the initial values using a Gauss-Newton nonlinear optimizer # The optimizer accepts an optional set of configuration parameters, # controlling things like convergence criteria, the type of linear # system solver to use, and the amount of information displayed during # optimization. We will set a few parameters as a demonstration. parameters = gtsam.GaussNewtonParams() # Stop iterating once the change in error between steps is less than this value parameters.relativeErrorTol = 1e-5 # Do not perform more than N iteration steps parameters.maxIterations = 100 # Create the optimizer ... optimizer = gtsam.GaussNewtonOptimizer(graph, initialEstimate, parameters) # ... and optimize result = optimizer.optimize() result.print("Final Result:\n") # 5. Calculate and print marginal covariances for all variables marginals = gtsam.Marginals(graph, result) print("x1 covariance:\n", marginals.marginalCovariance(1)) print("x2 covariance:\n", marginals.marginalCovariance(2)) print("x3 covariance:\n", marginals.marginalCovariance(3)) print("x4 covariance:\n", marginals.marginalCovariance(4)) print("x5 covariance:\n", marginals.marginalCovariance(5))