function [ values, measurements] = covarianceAnalysisCreateTrajectory( options, metadata ) % Create a trajectory for running covariance analysis scripts. % 'options' contains fields for including various factor types and setting trajectory length % 'metadata' is a storage variable for miscellaneous factor-specific values % Authors: Luca Carlone, David Jensen % Date: 2014/04/16 import gtsam.*; values = Values; if options.useRealData == 1 %% Create a ground truth trajectory from Real data (if available) fprintf('\nUsing real data as ground truth\n'); gtScenario = load('truth_scen2.mat', 'Time', 'Lat', 'Lon', 'Alt', 'Roll', 'Pitch', 'Heading',... 'VEast', 'VNorth', 'VUp'); Org_lat = gtScenario.Lat(1); Org_lon = gtScenario.Lon(1); initialPositionECEF = imuSimulator.LatLonHRad_to_ECEF([gtScenario.Lat(1); gtScenario.Lon(1); gtScenario.Alt(1)]); % Limit the trajectory length options.trajectoryLength = min([length(gtScenario.Lat) options.trajectoryLength+1]); for i=1:options.trajectoryLength+1 % Update the pose key currentPoseKey = symbol('x', i-1); % Generate the current pose scenarioInd = options.subsampleStep * (i-1) + 1 gtECEF = imuSimulator.LatLonHRad_to_ECEF([gtScenario.Lat(scenarioInd); gtScenario.Lon(scenarioInd); gtScenario.Alt(scenarioInd)]); % truth in ENU dX = gtECEF(1) - initialPositionECEF(1); dY = gtECEF(2) - initialPositionECEF(2); dZ = gtECEF(3) - initialPositionECEF(3); [xlt, ylt, zlt] = imuSimulator.ct2ENU(dX, dY, dZ,Org_lat, Org_lon); gtPosition = [xlt, ylt, zlt]'; gtRotation = Rot3; % Rot3.ypr(gtScenario.Heading(scenarioInd), gtScenario.Pitch(scenarioInd), gtScenario.Roll(scenarioInd)); currentPose = Pose3(gtRotation, Point3(gtPosition)); % Add values values.insert(currentPoseKey, currentPose); % Generate the measurement. The first pose is considered the prior, so % it has no measurement if i > 1 prevPose = values.at(currentPoseKey - 1); deltaPose = prevPose.between(currentPose); measurements.deltaMatrix(i-1,:) = Pose3.Logmap(deltaPose); end end else %% Create a random trajectory as ground truth currentPose = Pose3; % initial pose % initial pose unsmooth_DP = 0.5; % controls smoothness on translation norm unsmooth_DR = 0.1; % controls smoothness on rotation norm fprintf('\nCreating a random ground truth trajectory\n'); currentPoseKey = symbol('x', 0); values.insert(currentPoseKey, currentPose); for i=1:options.trajectoryLength % Update the pose key currentPoseKey = symbol('x', i); % Generate the new measurements gtDeltaPosition = unsmooth_DP*randn(3,1) + [20;0;0]; % create random vector with mean = [20 0 0] gtDeltaRotation = unsmooth_DR*randn(3,1) + [0;0;0]; % create random rotation with mean [0 0 0] measurements.deltaMatrix(i,:) = [gtDeltaRotation; gtDeltaPosition]; % Create the next pose deltaPose = Pose3.Expmap(measurements.deltaMatrix(i,:)'); currentPose = currentPose.compose(deltaPose); % Add the current pose as a value values.insert(currentPoseKey, currentPose); end % end of random trajectory creation end % end of else %% Create IMU measurements and Values for the trajectory if options.includeIMUFactors == 1 currentVel = [0 0 0]; % initial velocity (used to generate IMU measurements) deltaT = 0.1; % amount of time between IMU measurements % Iterate over the deltaMatrix to generate appropriate IMU measurements for i = 0:size(measurements.deltaMatrix, 1) % Update Keys currentVelKey = symbol('v', i); currentBiasKey = symbol('b', i); if i == 0 % Add initial values currentVel = [0 0 0]; values.insert(currentVelKey, LieVector(currentVel')); values.insert(currentBiasKey, metadata.imu.zeroBias); else measurements.imu.deltaT(i) = deltaT; % create accel and gyro measurements based on measurements.imu.gyro(i,:) = measurements.deltaMatrix(i, 1:3)./measurements.imu.deltaT(i); % acc = (deltaPosition - initialVel * dT) * (2/dt^2) measurements.imu.accel(i,:) = (measurements.deltaMatrix(i, 4:6) ... - currentVel.*measurements.imu.deltaT(i)).*(2/(measurements.imu.deltaT(i)*measurements.imu.deltaT(i))); % Update velocity currentVel = measurements.deltaMatrix(i,4:6)./measurements.imu.deltaT(i); % Add Values: velocity and bias values.insert(currentVelKey, LieVector(currentVel')); values.insert(currentBiasKey, metadata.imu.zeroBias); end end end % end of IMU measurements end