/** * @file LPInitSolverMatlab.h * @brief This LPInitSolver implements the strategy in Matlab: * @author Ivan Dario Jimenez * @date 1/24/16 */ #pragma once #include #include namespace gtsam { /** * This LPInitSolver implements the strategy in Matlab: * http://www.mathworks.com/help/optim/ug/linear-programming-algorithms.html#brozyzb-9 * Solve for x and y: * min y * st Ax = b * Cx - y <= d * where y \in R, x \in R^n, and Ax = b and Cx <= d is the constraints of the original problem. * * If the solution for this problem {x*,y*} has y* <= 0, we'll have x* a feasible initial point * of the original problem * otherwise, if y* > 0 or the problem has no solution, the original problem is infeasible. * * The initial value of this initial problem can be found by solving * min ||x||^2 * s.t. Ax = b * to have a solution x0 * then y = max_j ( Cj*x0 - dj ) -- due to the constraints y >= Cx - d * * WARNING: If some xj in the inequality constraints does not exist in the equality constraints, * set them as zero for now. If that is the case, the original problem doesn't have a unique * solution (it could be either infeasible or unbounded). * So, if the initialization fails because we enforce xj=0 in the problematic * inequality constraint, we can't conclude that the problem is infeasible. * However, whether it is infeasible or unbounded, we don't have a unique solution anyway. */ class LPInitSolverMatlab : public LPInitSolver { typedef LPInitSolver Base; public: LPInitSolverMatlab(const LPSolver& lpSolver) : Base(lpSolver) {} virtual ~LPInitSolverMatlab() {} virtual VectorValues solve() const { // Build the graph to solve for the initial value of the initial problem GaussianFactorGraph::shared_ptr initOfInitGraph = buildInitOfInitGraph(); VectorValues x0 = initOfInitGraph->optimize(); double y0 = compute_y0(x0); Key yKey = maxKey(lpSolver_.keysDim()) + 1; // the unique key for y0 VectorValues xy0(x0); xy0.insert(yKey, Vector::Constant(1, y0)); // Formulate and solve the initial LP LP::shared_ptr initLP = buildInitialLP(yKey); // solve the initialLP LPSolver lpSolveInit(*initLP); VectorValues xyInit = lpSolveInit.optimize(xy0).first; double yOpt = xyInit.at(yKey)[0]; xyInit.erase(yKey); if ( yOpt > 0) throw InfeasibleOrUnboundedProblem(); else return xyInit; } private: /// build initial LP LP::shared_ptr buildInitialLP(Key yKey) const { LP::shared_ptr initLP(new LP()); initLP->cost = LinearCost(yKey, ones(1)); // min y initLP->equalities = lp_.equalities; // st. Ax = b initLP->inequalities = addSlackVariableToInequalities(yKey, lp_.inequalities); // Cx-y <= d return initLP; } /// Find the max key in the problem to determine unique keys for additional slack variables Key maxKey(const KeyDimMap& keysDim) const { Key maxK = 0; BOOST_FOREACH(Key key, keysDim | boost::adaptors::map_keys) if (maxK < key) maxK = key; return maxK; } /** * Build the following graph to solve for an initial value of the initial problem * min ||x||^2 s.t. Ax = b */ GaussianFactorGraph::shared_ptr buildInitOfInitGraph() const { // first add equality constraints Ax = b GaussianFactorGraph::shared_ptr initGraph(new GaussianFactorGraph(lp_.equalities)); // create factor ||x||^2 and add to the graph const KeyDimMap& keysDim = lpSolver_.keysDim(); BOOST_FOREACH(Key key, keysDim | boost::adaptors::map_keys) { size_t dim = keysDim.at(key); initGraph->push_back(JacobianFactor(key, eye(dim), zero(dim))); } return initGraph; } /// y = max_j ( Cj*x0 - dj ) -- due to the inequality constraints y >= Cx - d double compute_y0(const VectorValues& x0) const { double y0 = -std::numeric_limits::infinity(); BOOST_FOREACH(const LinearInequality::shared_ptr& factor, lp_.inequalities) { double error = factor->error(x0); if (error > y0) y0 = error; } return y0; } /// Collect all terms of a factor into a container. TODO: avoid memcpy? TermsContainer collectTerms(const LinearInequality& factor) const { TermsContainer terms; for (Factor::const_iterator it = factor.begin(); it != factor.end(); it++) { terms.push_back(make_pair(*it, factor.getA(it))); } return terms; } /// Turn Cx <= d into Cx - y <= d factors InequalityFactorGraph addSlackVariableToInequalities(Key yKey, const InequalityFactorGraph& inequalities) const { InequalityFactorGraph slackInequalities; BOOST_FOREACH(const LinearInequality::shared_ptr& factor, lp_.inequalities) { TermsContainer terms = collectTerms(*factor); // Cx terms.push_back(make_pair(yKey, Matrix::Constant(1, 1, -1.0))); // -y double d = factor->getb()[0]; slackInequalities.push_back(LinearInequality(terms, d, factor->dualKey())); } return slackInequalities; } // friend class for unit-testing private methods FRIEND_TEST(LPInitSolverMatlab, initialization); }; }