/** * @file testBayesTree.cpp * @brief Unit tests for Bayes Tree * @author Frank Dellaert */ #include // for operator += using namespace boost::assign; #include #include "SymbolicBayesNet.h" #include "GaussianBayesNet.h" #include "SymbolicFactorGraph.h" #include "Ordering.h" #include "BayesTree-inl.h" #include "smallExample.h" using namespace gtsam; typedef BayesTree SymbolicBayesTree; typedef BayesTree GaussianBayesTree; // Conditionals for ASIA example from the tutorial with A and D evidence SymbolicConditional::shared_ptr B(new SymbolicConditional("B")), L( new SymbolicConditional("L", "B")), E( new SymbolicConditional("E", "L", "B")), S(new SymbolicConditional("S", "L", "B")), T(new SymbolicConditional("T", "E", "L")), X( new SymbolicConditional("X", "E")); /* ************************************************************************* */ TEST( BayesTree, Front ) { SymbolicBayesNet f1; f1.push_back(B); f1.push_back(L); SymbolicBayesNet f2; f2.push_back(L); f2.push_back(B); CHECK(f1.equals(f1)); CHECK(!f1.equals(f2)); } /* ************************************************************************* */ TEST( BayesTree, constructor ) { // Create using insert SymbolicBayesTree bayesTree; bayesTree.insert(B); bayesTree.insert(L); bayesTree.insert(E); bayesTree.insert(S); bayesTree.insert(T); bayesTree.insert(X); // Check Size LONGS_EQUAL(4,bayesTree.size()); // Check root BayesNet expected_root; expected_root.push_back(E); expected_root.push_back(L); expected_root.push_back(B); boost::shared_ptr actual_root = bayesTree.root(); CHECK(assert_equal(expected_root,*actual_root)); // Create from symbolic Bayes chain in which we want to discover cliques SymbolicBayesNet ASIA; ASIA.push_back(X); ASIA.push_back(T); ASIA.push_back(S); ASIA.push_back(E); ASIA.push_back(L); ASIA.push_back(B); SymbolicBayesTree bayesTree2(ASIA); // Check whether the same CHECK(assert_equal(bayesTree,bayesTree2)); } /* ************************************************************************* */ // Some numbers that should be consistent among all smoother tests double sigmax1 = 0.786153, sigmax2 = 0.687131, sigmax3 = 0.671512, sigmax4 = 0.669534, sigmax5 = sigmax3, sigmax6 = sigmax2, sigmax7 = sigmax1; /* ************************************************************************* * Bayes tree for smoother with "natural" ordering: C1 x6 x7 C2 x5 : x6 C3 x4 : x5 C4 x3 : x4 C5 x2 : x3 C6 x1 : x2 /* ************************************************************************* */ TEST( BayesTree, linear_smoother_shortcuts ) { // Create smoother with 7 nodes GaussianFactorGraph smoother = createSmoother(7); Ordering ordering; for (int t = 1; t <= 7; t++) ordering.push_back(symbol('x', t)); // eliminate using the "natural" ordering GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering); // Create the Bayes tree GaussianBayesTree bayesTree(chordalBayesNet); LONGS_EQUAL(6,bayesTree.size()); // Check the conditional P(Root|Root) GaussianBayesNet empty; GaussianBayesTree::sharedClique R = bayesTree.root(); GaussianBayesNet actual1 = R->shortcut(R); CHECK(assert_equal(empty,actual1,1e-4)); // Check the conditional P(C2|Root) GaussianBayesTree::sharedClique C2 = bayesTree["x5"]; GaussianBayesNet actual2 = C2->shortcut(R); CHECK(assert_equal(empty,actual2,1e-4)); // Check the conditional P(C3|Root) Vector sigma3 = repeat(2, 0.61808); Matrix A56 = Matrix_(2,2,-0.382022,0.,0.,-0.382022); GaussianBayesNet expected3; push_front(expected3,"x5", zero(2), eye(2), "x6", A56, sigma3); GaussianBayesTree::sharedClique C3 = bayesTree["x4"]; GaussianBayesNet actual3 = C3->shortcut(R); CHECK(assert_equal(expected3,actual3,1e-4)); // Check the conditional P(C4|Root) Vector sigma4 = repeat(2, 0.661968); Matrix A46 = Matrix_(2,2,-0.146067,0.,0.,-0.146067); GaussianBayesNet expected4; push_front(expected4,"x4", zero(2), eye(2), "x6", A46, sigma4); GaussianBayesTree::sharedClique C4 = bayesTree["x3"]; GaussianBayesNet actual4 = C4->shortcut(R); CHECK(assert_equal(expected4,actual4,1e-4)); } /* ************************************************************************* * Bayes tree for smoother with "nested dissection" ordering: Node[x1] P(x1 | x2) Node[x3] P(x3 | x2 x4) Node[x5] P(x5 | x4 x6) Node[x7] P(x7 | x6) Node[x2] P(x2 | x4) Node[x6] P(x6 | x4) Node[x4] P(x4) becomes C1 x5 x6 x4 C2 x3 x2 : x4 C3 x1 : x2 C4 x7 : x6 /* ************************************************************************* */ TEST( BayesTree, balanced_smoother_marginals ) { // Create smoother with 7 nodes GaussianFactorGraph smoother = createSmoother(7); Ordering ordering; ordering += "x1","x3","x5","x7","x2","x6","x4"; // eliminate using a "nested dissection" ordering GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering); VectorConfig expectedSolution; BOOST_FOREACH(string key, ordering) expectedSolution.insert(key,zero(2)); VectorConfig actualSolution = optimize(chordalBayesNet); CHECK(assert_equal(expectedSolution,actualSolution,1e-4)); // Create the Bayes tree GaussianBayesTree bayesTree(chordalBayesNet); LONGS_EQUAL(4,bayesTree.size()); // Check marginal on x1 GaussianBayesNet expected1 = simpleGaussian("x1", zero(2), sigmax1); GaussianBayesNet actual1 = bayesTree.marginalBayesNet("x1"); CHECK(assert_equal(expected1,actual1,1e-4)); // Check marginal on x2 GaussianBayesNet expected2 = simpleGaussian("x2", zero(2), sigmax2); GaussianBayesNet actual2 = bayesTree.marginalBayesNet("x2"); CHECK(assert_equal(expected2,actual2,1e-4)); // Check marginal on x3 GaussianBayesNet expected3 = simpleGaussian("x3", zero(2), sigmax3); GaussianBayesNet actual3 = bayesTree.marginalBayesNet("x3"); CHECK(assert_equal(expected3,actual3,1e-4)); // Check marginal on x4 GaussianBayesNet expected4 = simpleGaussian("x4", zero(2), sigmax4); GaussianBayesNet actual4 = bayesTree.marginalBayesNet("x4"); CHECK(assert_equal(expected4,actual4,1e-4)); // Check marginal on x7 (should be equal to x1) GaussianBayesNet expected7 = simpleGaussian("x7", zero(2), sigmax7); GaussianBayesNet actual7 = bayesTree.marginalBayesNet("x7"); CHECK(assert_equal(expected7,actual7,1e-4)); } /* ************************************************************************* */ TEST( BayesTree, balanced_smoother_shortcuts ) { // Create smoother with 7 nodes GaussianFactorGraph smoother = createSmoother(7); Ordering ordering; ordering += "x1","x3","x5","x7","x2","x6","x4"; // Create the Bayes tree GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering); GaussianBayesTree bayesTree(chordalBayesNet); // Check the conditional P(Root|Root) GaussianBayesNet empty; GaussianBayesTree::sharedClique R = bayesTree.root(); GaussianBayesNet actual1 = R->shortcut(R); CHECK(assert_equal(empty,actual1,1e-4)); // Check the conditional P(C2|Root) GaussianBayesTree::sharedClique C2 = bayesTree["x3"]; GaussianBayesNet actual2 = C2->shortcut(R); CHECK(assert_equal(empty,actual2,1e-4)); // Check the conditional P(C3|Root), which should be equal to P(x2|x4) GaussianConditional::shared_ptr p_x2_x4 = chordalBayesNet["x2"]; GaussianBayesNet expected3; expected3.push_back(p_x2_x4); GaussianBayesTree::sharedClique C3 = bayesTree["x1"]; GaussianBayesNet actual3 = C3->shortcut(R); CHECK(assert_equal(expected3,actual3,1e-4)); } /* ************************************************************************* */ TEST( BayesTree, balanced_smoother_clique_marginals ) { // Create smoother with 7 nodes GaussianFactorGraph smoother = createSmoother(7); Ordering ordering; ordering += "x1","x3","x5","x7","x2","x6","x4"; // Create the Bayes tree GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering); GaussianBayesTree bayesTree(chordalBayesNet); // Check the clique marginal P(C3) GaussianBayesNet expected = simpleGaussian("x2",zero(2),sigmax2); Vector sigma = repeat(2, 0.707107); Matrix A12 = (-0.5)*eye(2); push_front(expected,"x1", zero(2), eye(2), "x2", A12, sigma); GaussianBayesTree::sharedClique R = bayesTree.root(), C3 = bayesTree["x1"]; FactorGraph marginal = C3->marginal(R); GaussianBayesNet actual = eliminate(marginal,C3->keys()); CHECK(assert_equal(expected,actual,1e-4)); } /* ************************************************************************* */ TEST( BayesTree, balanced_smoother_joint ) { // Create smoother with 7 nodes GaussianFactorGraph smoother = createSmoother(7); Ordering ordering; ordering += "x1","x3","x5","x7","x2","x6","x4"; // Create the Bayes tree GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering); GaussianBayesTree bayesTree(chordalBayesNet); // Conditional density elements reused by both tests Vector sigma = repeat(2, 0.786146); Matrix I = eye(2), A = -0.00429185*I; // Check the joint density P(x1,x7) factored as P(x1|x7)P(x7) GaussianBayesNet expected1 = simpleGaussian("x7", zero(2), sigmax7); push_front(expected1,"x1", zero(2), I, "x7", A, sigma); GaussianBayesNet actual1 = bayesTree.jointBayesNet("x1","x7"); CHECK(assert_equal(expected1,actual1,1e-4)); // Check the joint density P(x7,x1) factored as P(x7|x1)P(x1) GaussianBayesNet expected2 = simpleGaussian("x1", zero(2), sigmax1); push_front(expected2,"x7", zero(2), I, "x1", A, sigma); GaussianBayesNet actual2 = bayesTree.jointBayesNet("x7","x1"); CHECK(assert_equal(expected2,actual2,1e-4)); // Check the joint density P(x1,x4), i.e. with a root variable GaussianBayesNet expected3 = simpleGaussian("x4", zero(2), sigmax4); Vector sigma14 = repeat(2, 0.784465); Matrix A14 = -0.0769231*I; push_front(expected3,"x1", zero(2), I, "x4", A14, sigma14); GaussianBayesNet actual3 = bayesTree.jointBayesNet("x1","x4"); CHECK(assert_equal(expected3,actual3,1e-4)); // Check the joint density P(x4,x1), i.e. with a root variable, factored the other way GaussianBayesNet expected4 = simpleGaussian("x1", zero(2), sigmax1); Vector sigma41 = repeat(2, 0.668096); Matrix A41 = -0.055794*I; push_front(expected4,"x4", zero(2), I, "x1", A41, sigma41); GaussianBayesNet actual4 = bayesTree.jointBayesNet("x4","x1"); CHECK(assert_equal(expected4,actual4,1e-4)); } /* ************************************************************************* * Bayes Tree for testing conversion to a forest of orphans needed for incremental. A,B C|A E|B D|C F|E /* ************************************************************************* */ TEST( BayesTree, removePath ) { SymbolicConditional::shared_ptr A(new SymbolicConditional("A")), B(new SymbolicConditional("B", "A")), C(new SymbolicConditional("C", "A")), D(new SymbolicConditional("D", "C")), E(new SymbolicConditional("E", "B")), F(new SymbolicConditional("F", "E")); SymbolicBayesTree bayesTree; bayesTree.insert(A); bayesTree.insert(B); bayesTree.insert(C); bayesTree.insert(D); bayesTree.insert(E); bayesTree.insert(F); // remove C, expected outcome: factor graph with ABC, // Bayes Tree now contains two orphan trees: D|C and E|B,F|E SymbolicFactorGraph expected; expected.push_factor("A","C"); expected.push_factor("A","B"); expected.push_factor("A"); SymbolicFactorGraph actual = bayesTree.removePath("C"); CHECK(assert_equal(expected, actual)); // remove A, nothing should happen (already removed) SymbolicFactorGraph expected2; // empty factor actual = bayesTree.removePath("A"); // CHECK(assert_equal(expected2, actual)); // remove E: factor graph with EB; E|B removed from second orphan tree SymbolicFactorGraph expected3; expected3.push_factor("C","A"); actual = bayesTree.removePath("E"); // CHECK(assert_equal(expected3, actual)); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */