/** * @file NonlinearConjugateGradientOptimizer.cpp * @brief Test simple CG optimizer * @author Yong-Dian Jian * @date June 11, 2012 */ /** * @file testGradientDescentOptimizer.cpp * @brief Small test of NonlinearConjugateGradientOptimizer * @author Yong-Dian Jian * @date Jun 11, 2012 */ #include #include #include #include #include #include using namespace std; using namespace gtsam; // Generate a small PoseSLAM problem std::tuple generateProblem() { // 1. Create graph container and add factors to it NonlinearFactorGraph graph; // 2a. Add Gaussian prior Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin SharedDiagonal priorNoise = noiseModel::Diagonal::Sigmas( Vector3(0.3, 0.3, 0.1)); graph.addPrior(1, priorMean, priorNoise); // 2b. Add odometry factors SharedDiagonal odometryNoise = noiseModel::Diagonal::Sigmas( Vector3(0.2, 0.2, 0.1)); graph += BetweenFactor(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise); graph += BetweenFactor(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise); graph += BetweenFactor(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise); graph += BetweenFactor(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise); // 2c. Add pose constraint SharedDiagonal constraintUncertainty = noiseModel::Diagonal::Sigmas( Vector3(0.2, 0.2, 0.1)); graph += BetweenFactor(5, 2, Pose2(2.0, 0.0, M_PI_2), constraintUncertainty); // 3. Create the data structure to hold the initialEstimate estimate to the solution Values initialEstimate; Pose2 x1(0.5, 0.0, 0.2); initialEstimate.insert(1, x1); Pose2 x2(2.3, 0.1, -0.2); initialEstimate.insert(2, x2); Pose2 x3(4.1, 0.1, M_PI_2); initialEstimate.insert(3, x3); Pose2 x4(4.0, 2.0, M_PI); initialEstimate.insert(4, x4); Pose2 x5(2.1, 2.1, -M_PI_2); initialEstimate.insert(5, x5); return std::tie(graph, initialEstimate); } /* ************************************************************************* */ TEST(NonlinearConjugateGradientOptimizer, Optimize) { NonlinearFactorGraph graph; Values initialEstimate; std::tie(graph, initialEstimate) = generateProblem(); // cout << "initial error = " << graph.error(initialEstimate) << endl; NonlinearOptimizerParams param; param.maxIterations = 500; /* requires a larger number of iterations to converge */ param.verbosity = NonlinearOptimizerParams::SILENT; NonlinearConjugateGradientOptimizer optimizer(graph, initialEstimate, param); Values result = optimizer.optimize(); // cout << "cg final error = " << graph.error(result) << endl; EXPECT_DOUBLES_EQUAL(0.0, graph.error(result), 1e-4); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */