/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file PlanarSLAMSelfContained.cpp * @brief Simple robotics example from tutorial Figure 1.1 (left), with all typedefs * internal to this script. * @author Alex Cunningham */ #include #include // for all nonlinear keys #include // for points and poses #include #include // for modeling measurement uncertainty - all models included here #include // add in headers for specific factors #include #include #include // implementations for structures - needed if self-contained, and these should be included last #include #include #include // Main typedefs typedef gtsam::TypedSymbol PoseKey; // Key for poses, with type included typedef gtsam::TypedSymbol PointKey; // Key for points, with type included typedef gtsam::LieValues PoseValues; // config type for poses typedef gtsam::LieValues PointValues; // config type for points typedef gtsam::TupleValues2 Values; // main config with two variable classes typedef gtsam::NonlinearFactorGraph Graph; // graph structure typedef gtsam::NonlinearOptimizer Optimizer; // optimization engine for this domain using namespace std; using namespace gtsam; /** * In this version of the system we make the following assumptions: * - All values are axis aligned * - Robot poses are facing along the X axis (horizontal, to the right in images) * - We have bearing and range information for measurements * - We have full odometry for measurements * - The robot and landmarks are on a grid, moving 2 meters each step * - Landmarks are 2 meters away from the robot trajectory */ int main(int argc, char** argv) { // create keys for variables PoseKey x1(1), x2(2), x3(3); PointKey l1(1), l2(2); // create graph container and add factors to it Graph graph; /* add prior */ // gaussian for prior SharedDiagonal prior_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1)); Pose2 prior_measurement(0.0, 0.0, 0.0); // prior at origin PriorFactor posePrior(x1, prior_measurement, prior_model); // create the factor graph.add(posePrior); // add the factor to the graph /* add odometry */ // general noisemodel for odometry SharedDiagonal odom_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); Pose2 odom_measurement(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case) // create between factors to represent odometry BetweenFactor odom12(x1, x2, odom_measurement, odom_model); BetweenFactor odom23(x2, x3, odom_measurement, odom_model); graph.add(odom12); // add both to graph graph.add(odom23); /* add measurements */ // general noisemodel for measurements SharedDiagonal meas_model = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.2)); // create the measurement values - indices are (pose id, landmark id) Rot2 bearing11 = Rot2::fromDegrees(45), bearing21 = Rot2::fromDegrees(90), bearing32 = Rot2::fromDegrees(90); double range11 = sqrt(4+4), range21 = 2.0, range32 = 2.0; // create bearing/range factors BearingRangeFactor meas11(x1, l1, bearing11, range11, meas_model); BearingRangeFactor meas21(x2, l1, bearing21, range21, meas_model); BearingRangeFactor meas32(x3, l2, bearing32, range32, meas_model); // add the factors graph.add(meas11); graph.add(meas21); graph.add(meas32); graph.print("Full Graph"); // initialize to noisy points Values initial; initial.insert(x1, Pose2(0.5, 0.0, 0.2)); initial.insert(x2, Pose2(2.3, 0.1,-0.2)); initial.insert(x3, Pose2(4.1, 0.1, 0.1)); initial.insert(l1, Point2(1.8, 2.1)); initial.insert(l2, Point2(4.1, 1.8)); initial.print("initial estimate"); // optimize using Levenburg-Marquadt optimization with an ordering from colamd Optimizer::shared_values result = Optimizer::optimizeLM(graph, initial); result->print("final result"); return 0; }