/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file SFMExample.cpp * @brief A structure-from-motion problem on a simulated dataset * @author Duy-Nguyen Ta */ // For loading the data, see the comments therein for scenario (camera rotates around cube) #include "SFMdata.h" // Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y). #include // Each variable in the system (poses and landmarks) must be identified with a unique key. // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1). // Here we will use Symbols #include // In GTSAM, measurement functions are represented as 'factors'. Several common factors // have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems. // Here we will use Projection factors to model the camera's landmark observations. // Also, we will initialize the robot at some location using a Prior factor. #include #include // When the factors are created, we will add them to a Factor Graph. As the factors we are using // are nonlinear factors, we will need a Nonlinear Factor Graph. #include // Finally, once all of the factors have been added to our factor graph, we will want to // solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values. // GTSAM includes several nonlinear optimizers to perform this step. Here we will use a // trust-region method known as Powell's Degleg #include // The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the // nonlinear functions around an initial linearization point, then solve the linear system // to update the linearization point. This happens repeatedly until the solver converges // to a consistent set of variable values. This requires us to specify an initial guess // for each variable, held in a Values container. #include #include using namespace std; using namespace gtsam; /* ************************************************************************* */ int main(int argc, char* argv[]) { // Define the camera calibration parameters Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)); // Define the camera observation noise model noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v // Create the set of ground-truth landmarks vector points = createPoints(); // Create the set of ground-truth poses vector poses = createPoses(); // Create a factor graph NonlinearFactorGraph graph; // Add a prior on pose x1. This indirectly specifies where the origin is. noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished()); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw graph.push_back(PriorFactor(Symbol('x', 0), poses[0], poseNoise)); // add directly to graph // Simulated measurements from each camera pose, adding them to the factor graph for (size_t i = 0; i < poses.size(); ++i) { SimpleCamera camera(poses[i], *K); for (size_t j = 0; j < points.size(); ++j) { Point2 measurement = camera.project(points[j]); graph.push_back(GenericProjectionFactor(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K)); } } // Because the structure-from-motion problem has a scale ambiguity, the problem is still under-constrained // Here we add a prior on the position of the first landmark. This fixes the scale by indicating the distance // between the first camera and the first landmark. All other landmark positions are interpreted using this scale. noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1); graph.push_back(PriorFactor(Symbol('l', 0), points[0], pointNoise)); // add directly to graph graph.print("Factor Graph:\n"); // Create the data structure to hold the initial estimate to the solution // Intentionally initialize the variables off from the ground truth Values initialEstimate; for (size_t i = 0; i < poses.size(); ++i) initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)))); for (size_t j = 0; j < points.size(); ++j) initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15))); initialEstimate.print("Initial Estimates:\n"); /* Optimize the graph and print results */ Values result = DoglegOptimizer(graph, initialEstimate).optimize(); result.print("Final results:\n"); cout << "initial error = " << graph.error(initialEstimate) << endl; cout << "final error = " << graph.error(result) << endl; return 0; } /* ************************************************************************* */