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IMU Factor
The IMU factor has 2 variants:

1. ImuFactor is a 5-way factor between the previous pose and velocity, the current pose
and velocity, and the current IMU bias.

2. ImuFactor2 is a 3-way factor between the previous NavState, the current NavState and
the current IMU bias.

Both variants take a PreintegratedMeasurements object which encodes all the IMU measure-
ments between the previous timestep and the current timestep.
There are also 2 variants of this class:

1. Manifold Preintegration: This version keeps track of the incremental NavState AX;;
with respect to the previous NavState, on the NavState manifold itself. It also keeps
track of the R9*® Jacobian of AX;; w.r.t. the bias. This corresponds to Forster et. al.[1]

2. Tangent Preintegration: This version keeps track of the incremental NavState in the
NavState tangent space instead. This is a R vector preintegrated . It also keeps track
of the R9%® jacobian of the preintegrated  w.r.t. the bias.

The main function of a factor is to calculate an error. The easiest case to look at is the
NavState variant in ImuFactor2, which is given as:

AXy; = X; — Xy (1)

Combined IMU Factor

The IMU factor above requires that bias drift over time be modeled as a separate stochastic
process (using a BetweenFactor for example), a crucial aspect given that the preintegrated
measurements depend on these bias values and are thus correlated. For this reason, we provide
another type of IMU factor which we term the Combined IMU Factor. This factor similarly
has 2 variants:

1. CombinedlmuFactor is a 6-way factor between the previous pose, velocity and IMU bias
and the current pose, velocity and IMU bias.

2. CombinedImuFactor2 is a 4-way factor between the previous NavState and IMU bias
and the current NavState and IMU bias.
Covariance Matrices

For IMU preintegration, it is important to propagate the uncertainty accurately as well. As
such, we detail the various covariance matrices used in the preintegration step.

e Gyroscope Covariance @,,: Measurement uncertainty of the gyroscope.
o Accelerometer Covariance Qg : Measurement uncertainty of the accelerometer.

e Accelerometer Bias Covariance QQapace : The covariance associated with the accelerom-
eter bias random walk.



e Gyroscope Bias Covariance Qape : The covariance associated with the gyroscope bias
random walk.

e Integration Covariance (;n: : This is the uncertainty due to modeling errors in the
integration from acceleration to velocity and position.

e Initial Bias Estimate Covariance Q;n;+ : This is the uncertainty associated with the
estimation of the bias (since we jointly estimate the bias as well).

Navigation States

Let us assume a setup where frames with image and/or laser measurements are processed at
some fairly low rate, e.g., 10 Hz.
We define the state of the vehicle at those times as attitude, position, and velocity. These

three quantities are jointly referred to as a NavState X}’ 2 {R}, B, V' }, where the superscript
n denotes the navigation frame, and b the body frame. For simplicity, we drop these indices
below where clear from context.

Vector Fields and Differential Equations

We need a way to describe the evolution of a NavState over time. The NavState lives in a
9-dimensional manifold M, defined by the orthonormality constraints on R. For a NavState
X evolving over time we can write down a differential equation

X(t) = F(t,X) (2)

where F' is a time-varying vector field on M, defined as a mapping from R x M to tangent
vectors at X. A tangent vector at X is defined as the derivative of a trajectory at X, and
for the NavState manifold this will be a triplet

[R(t,X),P(t, X),V(t, X)] € 50(3) x R3 x R3

where we use square brackets to indicate a tangent vector. The space of all tangent vectors at
X is denoted by T'x M, and hence F(t, X) € Tx M. For example, if the state evolves along a

constant velocity trajectory
X(t) = {Ro, Po + Vot, Vo}

then the differential equation describing the trajectory is
X(t) = [039337%703:1)1] , X<O) = {R(LPO,VE)}

Valid vector fields on a NavState manifold are special, in that the attitude and velocity
derivatives can be arbitrary functions of X and t, but the derivative of position is constrained
to be equal to the current velocity V' (t):

X(t) = [R(X,0,V(0), V(X.0)] (3)

Suppose we are given the body angular velocity w’(t) and non-gravity acceleration a®(t)
in the body frame. We know (from Murray84book) that the derivative of R can be written as

R(X,t) = R()[w" (1))«



where [0]« € so(3) is the skew-symmetric matrix corresponding to 6, and hence the resulting
exact vector field is

X(t) = [ROX0, V0, V(X.1)| = [ROL' O] V(D)9 + R (?) (4)

Local Coordinates

Optimization on manifolds relies crucially on the concept of local coordinates. For example,
when optimizing over the rotations SO(3) starting from an initial estimate Ry, we define a
local map ®g, from 6 € R3 to a neighborhood of SO(3) centered around Ry,

DR, () = Roexp ([0]x)

where exp is the matrix exponential, given by

exp () = > 1[0 (5)

k=0

which for SO(3) can be efficiently computed in closed form.
The local coordinates 6 are isomorphic to tangent vectors at Ry. To see this, define 8 = wt

and note that
d®p, (wt)

dt

_ dRy exp ([wt]«)

o7 = Ry [wt] x

t=0

t=0
Hence, the 3-vector w defines a direction of travel on the SO(3) manifold, but does so in the
local coordinate frame define by Ry.

A similar story holds in SE(3): we define local coordinates ¢ = [wt, vt] € R® and a mapping

O, (€) = Toexpé

where £ € se(3) is defined as

and the 6-vectors £ are mapped to tangent vectors T()é at Tj.

Derivative of The Local Coordinate Mapping

For the local coordinate mapping ®g, (¢) in SO(3) we can define a 3 x 3 Jacobian H () that
models the effect of an incremental change 0 to the local coordinates:

DRy (0 +0) = Pr, (0) exp ([H(0)d]x) = Pop, (9) (H(0)) (6)

This Jacobian depends only on 6 and, for the case of SO(3), is given by a formula similar to
the matrix exponential map,

o0

= G

k=0

which can also be computed in closed form. In particular, H(0) = I3x3 at the base Ry.



Numerical Integration in Local Coordinates

Inspired by the paper “Lie Group Methods” by Iserles et al. [2|, when we have a differential
equation on SO(3), '

we can transfer it to a differential equation in the 3-dimensional local coordinate space. To do
so, we model the solution to (7) as

R(t) = ®g, (0(1))

To find an expression for (t), create a trajectory v(d) that passes through R(t) for 6 = 0, and
moves 6(t) along the direction 6(¢):

1(6) = R(t +6) = B, (6(t) +0()8) ~ ®rgyy (H(0)d(2)3)

Taking the derivative for § = 0 we obtain

dD ) (H(G)é(t)é)
s=0 o

= R(t)[H(0)8(1))x
0=0

Comparing this to (7) we obtain a differential equation for 6(t):
0(t) = H(O)" {R(t)TF(R,1)}, 6(0) = 0351

In other words, the vector field F'(R,t) is rotated to the local frame, the inverse hat operator
is applied to get a 3-vector, which is then corrected by H(#)~! away from 6 = 0.

Retractions

Note that the use of the exponential map in local coordinate mappings is not obligatory, even
in the context of Lie groups. Often it is computationally expedient to use mappings that are
easier to compute, but yet induce the same tangent vector at Tp. Mappings that satisfy this
constraint are collectively known as retractions. For example, for SE(3) one could use the
retraction R, : R® — SE(3)

Ry, (§) = To {exp ([wt]x) , vt} = {Ppr, (wi), Po + Rovt}

This trajectory describes a linear path in position while the frame rotates, as opposed to the
helical path traced out by the exponential map. The tangent vector at Ty can be computed as

dRTo (5)

o = [Ro[w]x, Rov]

t=0

which is identical to the one induced by ®7,(£) = Tpexp é.
The NavState manifold is not a Lie group like SE(3), but we can easily define a retraction
that behaves similarly to the one for SFE(3), while treating velocities the same way as positions:

Rx,(C) = {®Pr, (wt), Py + Rovt, Vo + Rpat}



Here ¢ = [wt, vt, at] is a 9-vector, with respectively angular, position, and velocity components.
The tangent vector at X is

dRx Q)| _ [Rolw]x; Rov, Roal
dt |i—p

and the isomorphism between R? and T'x,M is ¢ — [Ro[wt]«, Rovt, Roat].

Integration in Local Coordinates

We now proceed exactly as before to describe the evolution of the NavState in local coordinates.
Let us model the solution of the differential equation (2) as a trajectory ((t) = [0(t), p(t), v(t)],
with ¢(0) = 0, in the local coordinate frame anchored at Xy. Note that this trajectory evolves
away from X, and we use the symbols @, p, and v to indicate that these are integrated rather
than differential quantities. With that, we have

X(t) = Rxo(C(1) = {®r, (0(t)) , Po + Rop(t), Vo + Rov(t)} (8)

We can create a trajectory 7(9) that passes through X (¢) for 6 =0

1(6) = X(t+8) = { @, (6(t) +0()8) , Po + Ro {p(t) + ()3}, Vo + Ro {u(t) + 6(t)o} |
and taking the derivative for § = 0 we obtain

X(t) = gl

s = [R(t)[H(e)é(t)]X,Rop(t),Rob(t)}

0=0

Comparing that with the vector field (4), we have exact integration iff
R(OIH(0)0(1)], Ro p(1), Ro v(8)| = [R()W*(6)], V(£), g + R(t)a" (1)

Or, as another way to state this, if we solve the differential equations for 6(t), p(t), and v(t)
such that

0t) = H(O) w1
p(t) = R{Vo+o(t)
o(t) = R g+ Rp(t)a’(t)

where R)(t) = R} R(t) is the rotation of the body frame with respect to R, and we have used
V(t) = Vo + Rou(t).

Application: The New IMU Factor

In the IMU factor, we need to predict the NavState X; from the current NavState X; and the
IMU measurements in-between. The above scheme suffers from a problem, which is that X;
needs to be known in order to compensate properly for the initial velocity and rotated gravity
vector. Hence, the idea of Lupton|3] was to split up v(¢) into a gravity-induced part and an
accelerometer part

o(t) = vy(t) + va(t)



evolving as

bg(t) = RZ:TQ
ba(t) = Ri(t)a’(t)

The solution for the first equation is simply v,(t) = RT gt. Similarly, we split the position p()
up in three parts

p(t) = pi(t) + py(t) + pu(t)
evolving as
pi(t) = R Vi
Pe(t) = wy(t) = Ri gt
Do (t) = Uq (t)

Here the solutions for the two first equations are simply

pi(t) = RIVit
t2
po(t) = RI%-

The recipe for the IMU factor is then, in summary:
1. Solve the ordinary differential equations
0(t) = HO) " w"(t)

pu(t) = Ua'(t)
ba(t) = Ri(t)a’(t)

starting from zero, up to time ¢;;, where R} (t) = exp[f(t)]« at all times.

2. Form the local coordinate vector as

gt
C(tig) = [0(tiz), p(tiz), v(ti;)] = [9(%‘)7 RI'Viti; + RT = + py(tij), RY gti; + Ua(tij)]

2

3. Predict the NavState X; at time ¢; from

gt
X; = Rx,(C(tij)) = {‘PRO (0(tsj)), Py + Viti; + TJ + Ripy(tij), Vi + gtij + R; Ua(tij)}

Note that the predicted NavState X; depends on Xj, but the integrated quantities 6(t),p,(t),
and v4(t) do not.



A Simple Euler Scheme

To solve the differential equation we can use a simple Euler scheme:

Ori1 = Op +0(tn)Ar = O + H(O) ' whA, (9)
Prt1 = pr + Po(ti)De = pr+ vl (10)
Vps1 = Uk 4+ Da(tr) A = g + exp ([0k]x) ab Ay (11)
where 0y, 2 0(tr), pk 2 pu(ty), and vy 2 va(tx). However, the position propagation can be
done more accurately, by using exact integration of the zero-order hold acceleration az:
Ops1 = Op+ H(0p) ' wid (12)
AQ
Pey1 = Pk +URA¢+ Rwif (13)
Vg1l = U+ Rk:aZAt (14)

where we defined the rotation matrix Ry = exp ([0x]x)-

Noise Modeling

Given the above solutions to the differential equations, we add noise modeling to account for
the various sources of error in the system

O = Ok + H(Op) " (wp + € — b — i) A
A2 .
Pki1 = DPr+vplAe+ Ri(al + e — b — G?m't)?t + e (15)
Vg1 = U+ Ri(al + e — b — ei) Ay
beyr = b+ ot
bw
(l;)-l—l = by +e

which we can write compactly as,

Orr1 = fo(Ok, b}, €, E?Zn) (16)
Pk+1 = fp(Pk,UkaekavaEZvE?mtvfznt)
kel = fo(vrk,Okbk, € €imit)
bigr = foo(bfer)
1 = oo 7:,6%

Noise Propagation in IMU Factor

Even when we assume uncorrelated noise on w? and a’, the noise on the final computed
quantities will have a non-trivial covariance structure, because the intermediate quantities 6y
and vy appear in multiple places. To model the noise propagation, let us define ¢ = [0, pk, vi]
and rewrite Eqns. (12-14) as the non-linear function f

Cor1 = f (Ck,ai,w;’i)
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Then the noise on (i1 propagates as
S = ASeAL + BSy Bl + Cpudicy (17)

where Ay, is the 9 x 9 partial derivative of f wrpt (, and By and Cj the respective 9 x 3 partial
derivatives with respect to the measured quantities a® and w?®.

We start with the noise propagation on 6, which is independent of the other quantities.
Taking the derivative, we have

80k+1 o 8H(0k)*1w2
a0, I3x3 + 26, Ay

It can be shown that for small 6, we have

OH(0r) 'l

0 At
Lo k+1 Aty
26,1 N [wi]x and hence 26, I3xs 5 [wi]x
For the derivatives of pyy1 and vgy1 we need the derivative
ORial ORy,
T k= Rk[—ai]xaiek = Ry[—a}]x H (0r)
where we used
0 (Ra)
o~ Elalx

and the fact that the dependence of the rotation Ry on 6 is the already computed H (6y).
Putting all this together, we finally obtain

5t [wh]x , 03x3  0O3x3
A~ | Rp[-ab)«H(0p) 5 Isxs Isxsl
Rp[—ab]x H(0k)Ar  03x3  Isxs

The other partial derivatives are simply

03><32 H(0,) 1A,
By=| R5" |, Ck= 03x3
RkAt 03><3

Noise Propagation in Combined IMU Factor

We can similarly account for bias drift over time, as is commonly seen in commercial grade
IMUs.
We expand the state vector as (i = [0k, pk, vk, b}, b] to include the bias terms and define

the augmented noise vector € = [ef, €f., eza, ezw, e};"t, G?Zm e?Zit}. This gives the noise propagation
equation as
T T
Spp1 = FirEeF), + GrQiGy (18)

where F}, is the 15 x 15 derivative of f wrpt this new (, and Gy, is the 15 x 21 matrix for
first order uncertainty propagation. @Qj defines the uncertainty of 1. The top-left 9 x 9 of Fy,
is the same as Ay, thus we only have the jacobians wrpt the biases left to account for.



Conveniently, the jacobians of the pose and velocity wrpt the biases are already computed
in the ImuFactor derivation as matrices By and C}, while they are identity matrices wrpt the
biases themselves. Thus, we can easily plug-in the values from the previous section to give us

the final result

-1
Isxs — 5twh]x  Osxs  Osxz  Osxz  H(0p)'A,
b A2 Ay 2
Ril—al]lxH(0x) 5t Isxs I3x3l¢ RpSt 033
~ b
Fp~ | Ryl—ap|xH(0k)Ar O3x3 Isxz  RpAy 033
033 O3x3  O3x3 I3x3 03x3
033 O3x3  0O3x3 033 I3x3
Similarly for Qx,we get
- yw .
Ea
»o
Qr = b
Zint
Einitll Einitlg
Einitzl Einitzg
and for G we get
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k= 0¥  0et  9eb®  9ed®  Qeint 65’?‘1” 851?““ - 0 De@ 0 0 0 e
L I O bt bk Minit
D% 9t T T et T BT 0 0 Isx3 O 0 0
oY abY 9 9 9w Bl b 0 0 0 I 0 0
[ Oev e 9t 9T 9ent el Oeln;, - 33
We can perform the block-wise computation of GrQrGE
p p k
— _ B EUJ
90 90
5w O 0 0 0 0 e sa
0 0 0 a
0 8—51 0 —aei’;t 87]_51 0 o
T n b
GGy = | 0o 2o 0 0 J 0 by
Oe® anb . :
init Eznt
0 0 I3xz3 O 0 0 0 Siniti
| 0 0 0 I3x3 O 0 0 | Sinita:
r %Ew 0 0 0 83}% Einitzl 57?’3?" Einitgg b
0 @Ea 0 Op Zint élr;lt Zinitu ﬁzim’tlg
de? deint by Ml
GrQiGr=| 0 &xe 0 0 gb_syinitu_0i_syinitiz | G,
€ b Ot Minit
0 0 by 0 0 0 0
0 0 0 xb 0 0 0 |
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de? pa anfnzt é”’r]lb'n,zt
0 0 b 0 0 0
0 0 0o x¥ 0 0 0 |
[ 20 0 0 0 ]
0 0
0 3% = 0 0
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0 0 0 0 I3x3
0
0 g 000
p v
(g anggit an?sit 0 0
a0 0O 0 0
_ . . 9 .
a@%zw a@% + aﬁ%.t Sinita: aflﬁ’_t 3,;9{7?"1 Svinita anl?%‘t aflﬁ’_t Sinita 3371‘]1_]5 0
dp yinitia ol @Eal + Op yint Op
i ger 2 e + et 2 gl
T oD e + T G0
Ov_ svinit1a 00 v sadp . _Ov svinith_Op_ v sadv v svinityy _Ov
ani?sitz 87]?::11 86&2 e + ang’fit > 3?75’Sn aeaz dec + 8”?52‘752 9 ?’Zit 0
a
0 0 0 P
I 0 0 0 0

which we can break into 3 matrices for clarity, representing the main diagonal and off-
diagonal elements
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