/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * testTriangulation.cpp * * Created on: July 30th, 2013 * Author: cbeall3 */ #include #include #include #include namespace gtsam { /** * Non-linear factor for a constraint derived from a 2D measurement. * The calibration and pose are assumed known. * i.e. the main building block for visual SLAM. * TODO: refactor to avoid large copy/paste * TODO: even better, make GTSAM designate certain variables as constant * @addtogroup SLAM */ template class TriangulationFactor: public NoiseModelFactor1 { public: /// Camera type typedef PinholeCamera Camera; protected: // Keep a copy of measurement and calibration for I/O const Camera camera_; ///< Camera in which this landmark was seen const Point2 measured_; ///< 2D measurement // verbosity handling for Cheirality Exceptions const bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false) const bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false) public: /// shorthand for base class type typedef NoiseModelFactor1 Base; /// shorthand for this class typedef TriangulationFactor This; /// shorthand for a smart pointer to a factor typedef boost::shared_ptr shared_ptr; /// Default constructor TriangulationFactor() : throwCheirality_(false), verboseCheirality_(false) { } /** * Constructor with exception-handling flags * @param camera is the camera in which unknown landmark is seen * @param measured is the 2 dimensional location of point in image (the measurement) * @param model is the standard deviation * @param pointKey is the index of the landmark * @param throwCheirality determines whether Cheirality exceptions are rethrown * @param verboseCheirality determines whether exceptions are printed for Cheirality */ TriangulationFactor(const Camera& camera, const Point2& measured, const SharedNoiseModel& model, Key pointKey, bool throwCheirality = false, bool verboseCheirality = false) : Base(model, pointKey), camera_(camera), measured_(measured), throwCheirality_( throwCheirality), verboseCheirality_(verboseCheirality) { } /** Virtual destructor */ virtual ~TriangulationFactor() { } /// @return a deep copy of this factor virtual gtsam::NonlinearFactor::shared_ptr clone() const { return boost::static_pointer_cast( gtsam::NonlinearFactor::shared_ptr(new This(*this))); } /** * print * @param s optional string naming the factor * @param keyFormatter optional formatter useful for printing Symbols */ void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const { std::cout << s << "TriangulationFactor,"; camera_.print("camera"); measured_.print("z"); Base::print("", keyFormatter); } /// equals virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const { const This *e = dynamic_cast(&p); return e && Base::equals(p, tol) && this->camera_.equals(e->camera_, tol) && this->measured_.equals(e->measured_, tol); } /// Evaluate error h(x)-z and optionally derivatives Vector evaluateError(const Point3& point, boost::optional H2 = boost::none) const { try { Point2 error(camera_.project(point, boost::none, H2) - measured_); return error.vector(); } catch (CheiralityException& e) { if (H2) *H2 = zeros(2, 3); if (verboseCheirality_) std::cout << e.what() << ": Landmark " << DefaultKeyFormatter(this->key()) << " moved behind camera" << std::endl; if (throwCheirality_) throw e; return ones(2) * 2.0 * camera_.calibration().fx(); } } /** return the measurement */ const Point2& measured() const { return measured_; } /** return verbosity */ inline bool verboseCheirality() const { return verboseCheirality_; } /** return flag for throwing cheirality exceptions */ inline bool throwCheirality() const { return throwCheirality_; } private: /// Serialization function friend class boost::serialization::access; template void serialize(ARCHIVE & ar, const unsigned int version) { ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base); ar & BOOST_SERIALIZATION_NVP(camera_); ar & BOOST_SERIALIZATION_NVP(measured_); ar & BOOST_SERIALIZATION_NVP(throwCheirality_); ar & BOOST_SERIALIZATION_NVP(verboseCheirality_); } }; } // \ namespace gtsam #include #include #include #include #include using namespace std; using namespace gtsam; using namespace boost::assign; // Some common constants static const boost::shared_ptr sharedCal = // boost::make_shared(1500, 1200, 0, 640, 480); // Looking along X-axis, 1 meter above ground plane (x-y) static const Rot3 upright = Rot3::ypr(-M_PI / 2, 0., -M_PI / 2); static const Pose3 pose1 = Pose3(upright, gtsam::Point3(0, 0, 1)); PinholeCamera camera1(pose1, *sharedCal); // create second camera 1 meter to the right of first camera static const Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0)); PinholeCamera camera2(pose2, *sharedCal); // landmark ~5 meters infront of camera static const Point3 landmark(5, 0.5, 1.2); // 1. Project two landmarks into two cameras and triangulate Point2 z1 = camera1.project(landmark); Point2 z2 = camera2.project(landmark); //****************************************************************************** TEST( triangulation, twoPoses) { vector poses; vector measurements; poses += pose1, pose2; measurements += z1, z2; bool optimize = true; double rank_tol = 1e-9; boost::optional triangulated_landmark = triangulatePoint3(poses, sharedCal, measurements, rank_tol, optimize); EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2)); // 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814) measurements.at(0) += Point2(0.1, 0.5); measurements.at(1) += Point2(-0.2, 0.3); boost::optional triangulated_landmark_noise = triangulatePoint3(poses, sharedCal, measurements, rank_tol, optimize); EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2)); } //****************************************************************************** TEST( triangulation, twoPosesBundler) { boost::shared_ptr bundlerCal = // boost::make_shared(1500, 0, 0, 640, 480); PinholeCamera camera1(pose1, *bundlerCal); PinholeCamera camera2(pose2, *bundlerCal); // 1. Project two landmarks into two cameras and triangulate Point2 z1 = camera1.project(landmark); Point2 z2 = camera2.project(landmark); vector poses; vector measurements; poses += pose1, pose2; measurements += z1, z2; bool optimize = true; double rank_tol = 1e-9; boost::optional triangulated_landmark = triangulatePoint3(poses, bundlerCal, measurements, rank_tol, optimize); EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2)); // 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814) measurements.at(0) += Point2(0.1, 0.5); measurements.at(1) += Point2(-0.2, 0.3); boost::optional triangulated_landmark_noise = triangulatePoint3(poses, bundlerCal, measurements, rank_tol, optimize); EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2)); } //****************************************************************************** TEST( triangulation, fourPoses) { vector poses; vector measurements; poses += pose1, pose2; measurements += z1, z2; boost::optional triangulated_landmark = triangulatePoint3(poses, sharedCal, measurements); EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2)); // 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814) measurements.at(0) += Point2(0.1, 0.5); measurements.at(1) += Point2(-0.2, 0.3); boost::optional triangulated_landmark_noise = // triangulatePoint3(poses, sharedCal, measurements); EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2)); // 3. Add a slightly rotated third camera above, again with measurement noise Pose3 pose3 = pose1 * Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1)); SimpleCamera camera3(pose3, *sharedCal); Point2 z3 = camera3.project(landmark); poses += pose3; measurements += z3 + Point2(0.1, -0.1); boost::optional triangulated_3cameras = // triangulatePoint3(poses, sharedCal, measurements); EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2)); // Again with nonlinear optimization boost::optional triangulated_3cameras_opt = triangulatePoint3(poses, sharedCal, measurements, 1e-9, true); EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2)); // 4. Test failure: Add a 4th camera facing the wrong way Pose3 pose4 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1)); SimpleCamera camera4(pose4, *sharedCal); #ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION CHECK_EXCEPTION(camera4.project(landmark);, CheiralityException); poses += pose4; measurements += Point2(400, 400); CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements), TriangulationCheiralityException); #endif } //****************************************************************************** TEST( triangulation, fourPoses_distinct_Ks) { Cal3_S2 K1(1500, 1200, 0, 640, 480); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) SimpleCamera camera1(pose1, K1); // create second camera 1 meter to the right of first camera Cal3_S2 K2(1600, 1300, 0, 650, 440); SimpleCamera camera2(pose2, K2); // 1. Project two landmarks into two cameras and triangulate Point2 z1 = camera1.project(landmark); Point2 z2 = camera2.project(landmark); vector cameras; vector measurements; cameras += camera1, camera2; measurements += z1, z2; boost::optional triangulated_landmark = // triangulatePoint3(cameras, measurements); EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2)); // 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814) measurements.at(0) += Point2(0.1, 0.5); measurements.at(1) += Point2(-0.2, 0.3); boost::optional triangulated_landmark_noise = // triangulatePoint3(cameras, measurements); EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2)); // 3. Add a slightly rotated third camera above, again with measurement noise Pose3 pose3 = pose1 * Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1)); Cal3_S2 K3(700, 500, 0, 640, 480); SimpleCamera camera3(pose3, K3); Point2 z3 = camera3.project(landmark); cameras += camera3; measurements += z3 + Point2(0.1, -0.1); boost::optional triangulated_3cameras = // triangulatePoint3(cameras, measurements); EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2)); // Again with nonlinear optimization boost::optional triangulated_3cameras_opt = triangulatePoint3(cameras, measurements, 1e-9, true); EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2)); // 4. Test failure: Add a 4th camera facing the wrong way Pose3 pose4 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1)); Cal3_S2 K4(700, 500, 0, 640, 480); SimpleCamera camera4(pose4, K4); #ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION CHECK_EXCEPTION(camera4.project(landmark);, CheiralityException); cameras += camera4; measurements += Point2(400, 400); CHECK_EXCEPTION(triangulatePoint3(cameras, measurements), TriangulationCheiralityException); #endif } //****************************************************************************** TEST( triangulation, twoIdenticalPoses) { // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) SimpleCamera camera1(pose1, *sharedCal); // 1. Project two landmarks into two cameras and triangulate Point2 z1 = camera1.project(landmark); vector poses; vector measurements; poses += pose1, pose1; measurements += z1, z1; CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements), TriangulationUnderconstrainedException); } //****************************************************************************** /* TEST( triangulation, onePose) { // we expect this test to fail with a TriangulationUnderconstrainedException // because there's only one camera observation Cal3_S2 *sharedCal(1500, 1200, 0, 640, 480); vector poses; vector measurements; poses += Pose3(); measurements += Point2(); CHECK_EXCEPTION(triangulatePoint3(poses, measurements, *sharedCal), TriangulationUnderconstrainedException); } */ //****************************************************************************** TEST( triangulation, TriangulationFactor ) { // Create the factor with a measurement that is 3 pixels off in x Key pointKey(1); SharedNoiseModel model; typedef TriangulationFactor<> Factor; Factor factor(camera1, z1, model, pointKey, sharedCal); // Use the factor to calculate the Jacobians Matrix HActual; factor.evaluateError(landmark, HActual); // Matrix expectedH1 = numericalDerivative11( // boost::bind(&EssentialMatrixConstraint::evaluateError, &factor, _1, pose2, // boost::none, boost::none), pose1); // The expected Jacobian Matrix HExpected = numericalDerivative11( boost::bind(&Factor::evaluateError, &factor, _1, boost::none), landmark); // Verify the Jacobians are correct CHECK(assert_equal(HExpected, HActual, 1e-3)); } //****************************************************************************** int main() { TestResult tr; return TestRegistry::runAllTests(tr); } //******************************************************************************