class Point2 { Point2(); Point2(double x, double y); void print(string s) const; double x(); double y(); }; class Point3 { Point3(); Point3(double x, double y, double z); Point3(Vector v); void print(string s) const; bool equals(const Point3& p, double tol); Vector vector() const; double x(); double y(); double z(); }; class Rot2 { Rot2(); Rot2(double theta); void print(string s) const; bool equals(const Rot2& rot, double tol) const; double c() const; double s() const; }; class Rot3 { Rot3(); Rot3(Matrix R); void print(string s) const; bool equals(const Rot3& rot, double tol) const; }; class Pose2 { Pose2(); Pose2(double x, double y, double theta); Pose2(double theta, const Point2& t); Pose2(const Rot2& r, const Point2& t); Pose2(Vector v); void print(string s) const; bool equals(const Pose2& pose, double tol) const; double x() const; double y() const; double theta() const; int dim() const; Pose2* compose_(const Pose2& p2); Pose2* between_(const Pose2& p2); Vector localCoordinates(const Pose2& p); Pose2* retract_(Vector v); }; class Pose3 { Pose3(); Pose3(const Rot3& r, const Point3& t); Pose3(Vector v); void print(string s) const; bool equals(const Pose3& pose, double tol) const; double x() const; double y() const; double z() const; int dim() const; Pose3* compose_(const Pose3& p2); Pose3* between_(const Pose3& p2); Vector localCoordinates(const Pose3& p); }; class SharedGaussian { SharedGaussian(Matrix covariance); void print(string s) const; }; class SharedDiagonal { SharedDiagonal(Vector sigmas); void print(string s) const; Vector sample() const; }; class VectorValues { VectorValues(); VectorValues(int nVars, int varDim); void print(string s) const; bool equals(const VectorValues& expected, double tol) const; int size() const; void insert(int j, const Vector& value); }; class GaussianConditional { GaussianConditional(int key, Vector d, Matrix R, Vector sigmas); GaussianConditional(int key, Vector d, Matrix R, int name1, Matrix S, Vector sigmas); GaussianConditional(int key, Vector d, Matrix R, int name1, Matrix S, int name2, Matrix T, Vector sigmas); void print(string s) const; bool equals(const GaussianConditional &cg, double tol) const; }; class GaussianBayesNet { GaussianBayesNet(); void print(string s) const; bool equals(const GaussianBayesNet& cbn, double tol) const; void push_back(GaussianConditional* conditional); void push_front(GaussianConditional* conditional); }; class GaussianFactor { void print(string s) const; bool equals(const GaussianFactor& lf, double tol) const; double error(const VectorValues& c) const; }; class JacobianFactor { JacobianFactor(); JacobianFactor(Vector b_in); JacobianFactor(int i1, Matrix A1, Vector b, const SharedDiagonal& model); JacobianFactor(int i1, Matrix A1, int i2, Matrix A2, Vector b, const SharedDiagonal& model); JacobianFactor(int i1, Matrix A1, int i2, Matrix A2, int i3, Matrix A3, Vector b, const SharedDiagonal& model); void print(string s) const; bool equals(const GaussianFactor& lf, double tol) const; bool empty() const; Vector getb() const; double error(const VectorValues& c) const; GaussianConditional* eliminateFirst(); }; class GaussianFactorGraph { GaussianFactorGraph(); void print(string s) const; bool equals(const GaussianFactorGraph& lfgraph, double tol) const; int size() const; void push_back(GaussianFactor* ptr_f); double error(const VectorValues& c) const; double probPrime(const VectorValues& c) const; void combine(const GaussianFactorGraph& lfg); Matrix denseJacobian() const; Matrix denseHessian() const; Matrix sparseJacobian_() const; }; class KalmanFilter { KalmanFilter(Vector x, const SharedDiagonal& model); void print(string s) const; Vector mean() const; Matrix information() const; Matrix covariance() const; void predict(Matrix F, Matrix B, Vector u, const SharedDiagonal& model); void predict2(Matrix A0, Matrix A1, Vector b, const SharedDiagonal& model); void update(Matrix H, Vector z, const SharedDiagonal& model); }; class Landmark2 { Landmark2(); Landmark2(double x, double y); void print(string s) const; double x(); double y(); }; class Ordering { Ordering(); void print(string s) const; bool equals(const Ordering& ord, double tol) const; void push_back(string key); }; class PlanarSLAMValues { PlanarSLAMValues(); void print(string s) const; Pose2* pose(int key); void insertPose(int key, const Pose2& pose); void insertPoint(int key, const Point2& point); }; class PlanarSLAMGraph { PlanarSLAMGraph(); void print(string s) const; double error(const PlanarSLAMValues& values) const; Ordering* orderingCOLAMD(const PlanarSLAMValues& values) const; GaussianFactorGraph* linearize(const PlanarSLAMValues& values, const Ordering& ordering) const; void addPrior(int key, const Pose2& pose, const SharedNoiseModel& noiseModel); void addPoseConstraint(int key, const Pose2& pose); void addOdometry(int key1, int key2, const Pose2& odometry, const SharedNoiseModel& noiseModel); void addBearing(int poseKey, int pointKey, const Rot2& bearing, const SharedNoiseModel& noiseModel); void addRange(int poseKey, int pointKey, double range, const SharedNoiseModel& noiseModel); void addBearingRange(int poseKey, int pointKey, const Rot2& bearing, double range, const SharedNoiseModel& noiseModel); PlanarSLAMValues* optimize_(const PlanarSLAMValues& initialEstimate); }; class PlanarSLAMOdometry { PlanarSLAMOdometry(int key1, int key2, const Pose2& measured, const SharedNoiseModel& model); void print(string s) const; GaussianFactor* linearize(const PlanarSLAMValues& center, const Ordering& ordering) const; }; class GaussianSequentialSolver { GaussianSequentialSolver(const GaussianFactorGraph& graph, bool useQR); GaussianBayesNet* eliminate() const; VectorValues* optimize() const; GaussianFactor* marginalFactor(int j) const; Matrix marginalCovariance(int j) const; };