%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief Example of a simple 2D localization example % @author Frank Dellaert %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copied Original file. Modified by David Jensen to use Pose3 instead of % Pose2. Everything else is the same. import gtsam.* %% Assumptions % - Robot poses are facing along the X axis (horizontal, to the right in 2D) % - The robot moves 2 meters each step % - The robot is on a grid, moving 2 meters each step %% Create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph) graph = NonlinearFactorGraph; %% Add a Gaussian prior on pose x_1 priorMean = Pose3();%Pose3.Expmap([0.0; 0.0; 0.0; 0.0; 0.0; 0.0]); % prior mean is at origin priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.3; 0.1; 0.1; 0.1]); % 30cm std on x,y, 0.1 rad on theta graph.add(PriorFactorPose3(1, priorMean, priorNoise)); % add directly to graph %% Add two odometry factors odometry = Pose3.Expmap([0.0; 0.0; 0.0; 2.0; 0.0; 0.0]); % create a measurement for both factors (the same in this case) odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.2; 0.1; 0.1; 0.1]); % 20cm std on x,y, 0.1 rad on theta graph.add(BetweenFactorPose3(1, 2, odometry, odometryNoise)); graph.add(BetweenFactorPose3(2, 3, odometry, odometryNoise)); %% print graph.print(sprintf('\nFactor graph:\n')); %% Initialize to noisy points initialEstimate = Values; %initialEstimate.insert(1, Pose3.Expmap([0.2; 0.1; 0.1; 0.5; 0.0; 0.0])); %initialEstimate.insert(2, Pose3.Expmap([-0.2; 0.1; -0.1; 2.3; 0.1; 0.1])); %initialEstimate.insert(3, Pose3.Expmap([0.1; -0.1; 0.1; 4.1; 0.1; -0.1])); %initialEstimate.print(sprintf('\nInitial estimate:\n ')); for i=1:3 deltaPosition = 0.5*rand(3,1) + [1;0;0]; % create random vector with mean = [1 0 0] and sigma = 0.5 deltaRotation = 0.1*rand(3,1) + [0;0;0]; % create random rotation with mean [0 0 0] and sigma = 0.1 (rad) deltaPose = Pose3.Expmap([deltaRotation; deltaPosition]); currentPose = currentPose.compose(deltaPose); initialEstimate.insert(i, currentPose); end %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate); result = optimizer.optimizeSafely(); result.print(sprintf('\nFinal result:\n ')); %% Plot trajectory and covariance ellipses cla; hold on; plot3DTrajectory(result, [], Marginals(graph, result)); axis([-0.6 4.8 -1 1]) axis equal view(2)