/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file ProjectionFactorRollingShutterRollingShutter.cpp * @brief Unit tests for ProjectionFactorRollingShutter Class * @author Luca Carlone * @date July 2021 */ #include #include #include #include #include #include #include #include #include #include using namespace std::placeholders; using namespace std; using namespace gtsam; // make a realistic calibration matrix static double fov = 60; // degrees static size_t w=640,h=480; static Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h)); // Create a noise model for the pixel error static SharedNoiseModel model(noiseModel::Unit::Create(2)); // Convenience for named keys using symbol_shorthand::X; using symbol_shorthand::L; using symbol_shorthand::T; // Convenience to define common variables across many tests static Key poseKey1(X(1)); static Key poseKey2(X(2)); static Key pointKey(L(1)); static double interp_params = 0.5; static Point2 measurement(323.0, 240.0); static Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0)); /* ************************************************************************* */ TEST( ProjectionFactorRollingShutter, Constructor) { ProjectionFactorRollingShutter factor(measurement, interp_params, model, poseKey1, poseKey2, pointKey, K); } /* ************************************************************************* */ TEST( ProjectionFactorRollingShutter, ConstructorWithTransform) { ProjectionFactorRollingShutter factor(measurement, interp_params, model, poseKey1, poseKey2, pointKey, K, body_P_sensor); } /* ************************************************************************* */ TEST( ProjectionFactorRollingShutter, Equals ) { { // factors are equal ProjectionFactorRollingShutter factor1(measurement, interp_params, model, poseKey1, poseKey2, pointKey, K); ProjectionFactorRollingShutter factor2(measurement, interp_params, model, poseKey1, poseKey2, pointKey, K); CHECK(assert_equal(factor1, factor2)); } { // factors are NOT equal (keys are different) ProjectionFactorRollingShutter factor1(measurement, interp_params, model, poseKey1, poseKey2, pointKey, K); ProjectionFactorRollingShutter factor2(measurement, interp_params, model, poseKey1, poseKey1, pointKey, K); CHECK(!assert_equal(factor1, factor2)); // not equal } { // factors are NOT equal (different interpolation) ProjectionFactorRollingShutter factor1(measurement, 0.1, model, poseKey1, poseKey1, pointKey, K); ProjectionFactorRollingShutter factor2(measurement, 0.5, model, poseKey1, poseKey2, pointKey, K); CHECK(!assert_equal(factor1, factor2)); // not equal } } /* ************************************************************************* */ TEST( ProjectionFactorRollingShutter, EqualsWithTransform ) { { // factors are equal ProjectionFactorRollingShutter factor1(measurement, interp_params, model, poseKey1, poseKey2, pointKey, K, body_P_sensor); ProjectionFactorRollingShutter factor2(measurement, interp_params, model, poseKey1, poseKey2, pointKey, K, body_P_sensor); CHECK(assert_equal(factor1, factor2)); } { // factors are NOT equal ProjectionFactorRollingShutter factor1(measurement, interp_params, model, poseKey1, poseKey2, pointKey, K, body_P_sensor); Pose3 body_P_sensor2(Rot3::RzRyRx(0.0, 0.0, 0.0), Point3(0.25, -0.10, 1.0)); // rotation different from body_P_sensor ProjectionFactorRollingShutter factor2(measurement, interp_params, model, poseKey1, poseKey2, pointKey, K, body_P_sensor2); CHECK(!assert_equal(factor1, factor2)); } } /* ************************************************************************* */ TEST( ProjectionFactorRollingShutter, Error ) { { // Create the factor with a measurement that is 3 pixels off in x // Camera pose corresponds to the first camera double t = 0.0; ProjectionFactorRollingShutter factor(measurement, t, model, poseKey1, poseKey2, pointKey, K); // Set the linearization point Pose3 pose1(Rot3(), Point3(0,0,-6)); Pose3 pose2(Rot3(), Point3(0,0,-4)); Point3 point(0.0, 0.0, 0.0); // Use the factor to calculate the error Vector actualError(factor.evaluateError(pose1, pose2, point)); // The expected error is (-3.0, 0.0) pixels / UnitCovariance Vector expectedError = Vector2(-3.0, 0.0); // Verify we get the expected error CHECK(assert_equal(expectedError, actualError, 1e-9)); } { // Create the factor with a measurement that is 3 pixels off in x // Camera pose is actually interpolated now double t = 0.5; ProjectionFactorRollingShutter factor(measurement, t, model, poseKey1, poseKey2, pointKey, K); // Set the linearization point Pose3 pose1(Rot3(), Point3(0,0,-8)); Pose3 pose2(Rot3(), Point3(0,0,-4)); Point3 point(0.0, 0.0, 0.0); // Use the factor to calculate the error Vector actualError(factor.evaluateError(pose1, pose2, point)); // The expected error is (-3.0, 0.0) pixels / UnitCovariance Vector expectedError = Vector2(-3.0, 0.0); // Verify we get the expected error CHECK(assert_equal(expectedError, actualError, 1e-9)); } { // Create measurement by projecting 3D landmark double t = 0.3; Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0,0,0)); Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0,1)); Pose3 poseInterp = interpolate(pose1, pose2, t); PinholeCamera camera(poseInterp, *K); Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera Point2 measured = camera.project(point); // create factor ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2, pointKey, K); // Use the factor to calculate the error Vector actualError(factor.evaluateError(pose1, pose2, point)); // The expected error is zero Vector expectedError = Vector2(0.0, 0.0); // Verify we get the expected error CHECK(assert_equal(expectedError, actualError, 1e-9)); } } /* ************************************************************************* */ TEST( ProjectionFactorRollingShutter, ErrorWithTransform ) { // Create measurement by projecting 3D landmark double t = 0.3; Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0,0,0)); Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0,1)); Pose3 poseInterp = interpolate(pose1, pose2, t); Pose3 body_P_sensor3(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0.2,0.1)); PinholeCamera camera(poseInterp*body_P_sensor3, *K); Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera Point2 measured = camera.project(point); // create factor ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2, pointKey, K, body_P_sensor3); // Use the factor to calculate the error Vector actualError(factor.evaluateError(pose1, pose2, point)); // The expected error is zero Vector expectedError = Vector2(0.0, 0.0); // Verify we get the expected error CHECK(assert_equal(expectedError, actualError, 1e-9)); } /* ************************************************************************* */ TEST( ProjectionFactorRollingShutter, Jacobian ) { // Create measurement by projecting 3D landmark double t = 0.3; Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0,0,0)); Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0,1)); Pose3 poseInterp = interpolate(pose1, pose2, t); PinholeCamera camera(poseInterp, *K); Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera Point2 measured = camera.project(point); // create factor ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2, pointKey, K); // Use the factor to calculate the Jacobians Matrix H1Actual, H2Actual, H3Actual; factor.evaluateError(pose1, pose2, point, H1Actual, H2Actual, H3Actual); // Expected Jacobians via numerical derivatives Matrix H1Expected = numericalDerivative31( std::function( std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, boost::none, boost::none, boost::none)), pose1, pose2, point); Matrix H2Expected = numericalDerivative32( std::function( std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, boost::none, boost::none, boost::none)), pose1, pose2, point); Matrix H3Expected = numericalDerivative33( std::function( std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, boost::none, boost::none, boost::none)), pose1, pose2, point); CHECK(assert_equal(H1Expected, H1Actual, 1e-5)); CHECK(assert_equal(H2Expected, H2Actual, 1e-5)); CHECK(assert_equal(H3Expected, H3Actual, 1e-5)); } /* ************************************************************************* */ TEST( ProjectionFactorRollingShutter, JacobianWithTransform ) { // Create measurement by projecting 3D landmark double t = 0.6; Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0,0,0)); Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0,1)); Pose3 poseInterp = interpolate(pose1, pose2, t); Pose3 body_P_sensor3(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0,0.2,0.1)); PinholeCamera camera(poseInterp*body_P_sensor3, *K); Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera Point2 measured = camera.project(point); // create factor ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2, pointKey, K, body_P_sensor3); // Use the factor to calculate the Jacobians Matrix H1Actual, H2Actual, H3Actual; factor.evaluateError(pose1, pose2, point, H1Actual, H2Actual, H3Actual); // Expected Jacobians via numerical derivatives Matrix H1Expected = numericalDerivative31( std::function( std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, boost::none, boost::none, boost::none)), pose1, pose2, point); Matrix H2Expected = numericalDerivative32( std::function( std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, boost::none, boost::none, boost::none)), pose1, pose2, point); Matrix H3Expected = numericalDerivative33( std::function( std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, boost::none, boost::none, boost::none)), pose1, pose2, point); CHECK(assert_equal(H1Expected, H1Actual, 1e-5)); CHECK(assert_equal(H2Expected, H2Actual, 1e-5)); CHECK(assert_equal(H3Expected, H3Actual, 1e-5)); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */