%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief Simple robotics example using the pre-built planar SLAM domain % @author Alex Cunningham % @author Frank Dellaert %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Assumptions % - All values are axis aligned % - Robot poses are facing along the X axis (horizontal, to the right in images) % - We have bearing and range information for measurements % - We have full odometry for measurements % - The robot and landmarks are on a grid, moving 2 meters each step % - Landmarks are 2 meters away from the robot trajectory %% Create keys for variables x1 = symbol('x',1); x2 = symbol('x',2); x3 = symbol('x',3); l1 = symbol('l',1); l2 = symbol('l',2); %% Create graph container and add factors to it graph = planarSLAMGraph; %% Add prior % gaussian for prior priorNoise = gtsamSharedNoiseModel_Sigmas([0.3; 0.3; 0.1]); priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin graph.addPrior(x1, priorMean, priorNoise); % add directly to graph %% Add odometry % general noisemodel for odometry odometryNoise = gtsamSharedNoiseModel_Sigmas([0.2; 0.2; 0.1]); odometry = gtsamPose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case) graph.addOdometry(x1, x2, odometry, odometryNoise); graph.addOdometry(x2, x3, odometry, odometryNoise); %% Add measurements % general noisemodel for measurements meas_model = gtsamSharedNoiseModel_Sigmas([0.1; 0.2]); % create the measurement values - indices are (pose id, landmark id) degrees = pi/180; bearing11 = gtsamRot2(45*degrees); bearing21 = gtsamRot2(90*degrees); bearing32 = gtsamRot2(90*degrees); range11 = sqrt(4+4); range21 = 2.0; range32 = 2.0; % % create bearing/range factors and add them graph.addBearingRange(x1, l1, bearing11, range11, meas_model); graph.addBearingRange(x2, l1, bearing21, range21, meas_model); graph.addBearingRange(x3, l2, bearing32, range32, meas_model); % print graph.print('full graph'); %% Initialize to noisy points initialEstimate = planarSLAMValues; initialEstimate.insertPose(x1, gtsamPose2(0.5, 0.0, 0.2)); initialEstimate.insertPose(x2, gtsamPose2(2.3, 0.1,-0.2)); initialEstimate.insertPose(x3, gtsamPose2(4.1, 0.1, 0.1)); initialEstimate.insertPoint(l1, gtsamPoint2(1.8, 2.1)); initialEstimate.insertPoint(l2, gtsamPoint2(4.1, 1.8)); initialEstimate.print('initial estimate'); %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd result = graph.optimize(initialEstimate); result.print('final result');