/** * GTSAM Wrap Module definition * * These are the current classes available through the matlab toolbox interface, * add more functions/classes as they are available. * * Requirements: * Constructors must appear in a class before any methods * Methods can only return Matrix, Vector, double, int, void, and a shared_ptr to any other object * Comments can use either C++ or C style * Static methods are not supported - FIXED * Methods must start with a lowercase letter * Static methods must start with an uppercase letter * Classes must start with an uppercase letter */ class Point2 { Point2(); Point2(double x, double y); static Point2* Expmap_(Vector v); static Vector Logmap(const Point2& p); void print(string s) const; double x(); double y(); Point2* compose_(const Point2& p2); Point2* between_(const Point2& p2); Vector localCoordinates(const Point2& p); Point2* retract_(Vector v); }; class Point3 { Point3(); Point3(double x, double y, double z); Point3(Vector v); static Point3* Expmap_(Vector v); static Vector Logmap(const Point3& p); void print(string s) const; bool equals(const Point3& p, double tol); Vector vector() const; double x(); double y(); double z(); Point3* compose_(const Point3& p2); Point3* between_(const Point3& p2); Vector localCoordinates(const Point3& p); Point3* retract_(Vector v); }; class Rot2 { Rot2(); Rot2(double theta); static Rot2* Expmap_(Vector v); static Vector Logmap(const Rot2& p); void print(string s) const; bool equals(const Rot2& rot, double tol) const; double c() const; double s() const; Rot2* compose_(const Rot2& p2); Rot2* between_(const Rot2& p2); Vector localCoordinates(const Rot2& p); Rot2* retract_(Vector v); }; class Rot3 { Rot3(); Rot3(Matrix R); static Rot3* Expmap_(Vector v); static Vector Logmap(const Rot3& p); Matrix matrix() const; Matrix transpose() const; Vector xyz() const; Vector ypr() const; void print(string s) const; bool equals(const Rot3& rot, double tol) const; Rot3* compose_(const Rot3& p2); Rot3* between_(const Rot3& p2); Vector localCoordinates(const Rot3& p); Rot3* retract_(Vector v); }; class Pose2 { Pose2(); Pose2(double x, double y, double theta); Pose2(double theta, const Point2& t); Pose2(const Rot2& r, const Point2& t); Pose2(Vector v); static Pose2* Expmap_(Vector v); static Vector Logmap(const Pose2& p); void print(string s) const; bool equals(const Pose2& pose, double tol) const; double x() const; double y() const; double theta() const; int dim() const; Pose2* compose_(const Pose2& p2); Pose2* between_(const Pose2& p2); Vector localCoordinates(const Pose2& p); Pose2* retract_(Vector v); }; class Pose3 { Pose3(); Pose3(const Rot3& r, const Point3& t); Pose3(Vector v); Pose3(Matrix t); static Pose3* Expmap_(Vector v); static Vector Logmap(const Pose3& p); void print(string s) const; bool equals(const Pose3& pose, double tol) const; double x() const; double y() const; double z() const; Matrix matrix() const; Matrix adjointMap() const; Pose3* compose_(const Pose3& p2); Pose3* between_(const Pose3& p2); Vector localCoordinates(const Pose3& p); Pose3* retract_(Vector v); Point3* translation_() const; Rot3* rotation_() const; }; class SharedGaussian { SharedGaussian(Matrix covariance); void print(string s) const; }; class SharedDiagonal { SharedDiagonal(Vector sigmas); void print(string s) const; Vector sample() const; }; class VectorValues { VectorValues(); VectorValues(int nVars, int varDim); void print(string s) const; bool equals(const VectorValues& expected, double tol) const; int size() const; void insert(int j, const Vector& value); }; class GaussianConditional { GaussianConditional(int key, Vector d, Matrix R, Vector sigmas); GaussianConditional(int key, Vector d, Matrix R, int name1, Matrix S, Vector sigmas); GaussianConditional(int key, Vector d, Matrix R, int name1, Matrix S, int name2, Matrix T, Vector sigmas); void print(string s) const; bool equals(const GaussianConditional &cg, double tol) const; }; class GaussianBayesNet { GaussianBayesNet(); void print(string s) const; bool equals(const GaussianBayesNet& cbn, double tol) const; void push_back(GaussianConditional* conditional); void push_front(GaussianConditional* conditional); }; class GaussianFactor { void print(string s) const; bool equals(const GaussianFactor& lf, double tol) const; double error(const VectorValues& c) const; }; class JacobianFactor { JacobianFactor(); JacobianFactor(Vector b_in); JacobianFactor(int i1, Matrix A1, Vector b, const SharedDiagonal& model); JacobianFactor(int i1, Matrix A1, int i2, Matrix A2, Vector b, const SharedDiagonal& model); JacobianFactor(int i1, Matrix A1, int i2, Matrix A2, int i3, Matrix A3, Vector b, const SharedDiagonal& model); void print(string s) const; bool equals(const GaussianFactor& lf, double tol) const; bool empty() const; Vector getb() const; double error(const VectorValues& c) const; GaussianConditional* eliminateFirst(); }; class GaussianFactorGraph { GaussianFactorGraph(); void print(string s) const; bool equals(const GaussianFactorGraph& lfgraph, double tol) const; int size() const; void push_back(GaussianFactor* ptr_f); double error(const VectorValues& c) const; double probPrime(const VectorValues& c) const; void combine(const GaussianFactorGraph& lfg); Matrix denseJacobian() const; Matrix denseHessian() const; Matrix sparseJacobian_() const; }; class KalmanFilter { KalmanFilter(Vector x, const SharedDiagonal& model); void print(string s) const; Vector mean() const; Matrix information() const; Matrix covariance() const; void predict(Matrix F, Matrix B, Vector u, const SharedDiagonal& model); void predict2(Matrix A0, Matrix A1, Vector b, const SharedDiagonal& model); void update(Matrix H, Vector z, const SharedDiagonal& model); }; class Landmark2 { Landmark2(); Landmark2(double x, double y); void print(string s) const; double x(); double y(); }; class Ordering { Ordering(); void print(string s) const; bool equals(const Ordering& ord, double tol) const; void push_back(string key); }; class PlanarSLAMValues { PlanarSLAMValues(); void print(string s) const; Pose2* pose(int key); void insertPose(int key, const Pose2& pose); void insertPoint(int key, const Point2& point); }; class PlanarSLAMGraph { PlanarSLAMGraph(); void print(string s) const; double error(const PlanarSLAMValues& values) const; Ordering* orderingCOLAMD(const PlanarSLAMValues& values) const; GaussianFactorGraph* linearize(const PlanarSLAMValues& values, const Ordering& ordering) const; void addPrior(int key, const Pose2& pose, const SharedNoiseModel& noiseModel); void addPoseConstraint(int key, const Pose2& pose); void addOdometry(int key1, int key2, const Pose2& odometry, const SharedNoiseModel& noiseModel); void addBearing(int poseKey, int pointKey, const Rot2& bearing, const SharedNoiseModel& noiseModel); void addRange(int poseKey, int pointKey, double range, const SharedNoiseModel& noiseModel); void addBearingRange(int poseKey, int pointKey, const Rot2& bearing, double range, const SharedNoiseModel& noiseModel); PlanarSLAMValues* optimize_(const PlanarSLAMValues& initialEstimate); }; class PlanarSLAMOdometry { PlanarSLAMOdometry(int key1, int key2, const Pose2& measured, const SharedNoiseModel& model); void print(string s) const; GaussianFactor* linearize(const PlanarSLAMValues& center, const Ordering& ordering) const; }; class GaussianSequentialSolver { GaussianSequentialSolver(const GaussianFactorGraph& graph, bool useQR); GaussianBayesNet* eliminate() const; VectorValues* optimize() const; GaussianFactor* marginalFactor(int j) const; Matrix marginalCovariance(int j) const; }; //// These are considered to be broken and will be added back as they start working //// It's assumed that there have been interface changes that might break this // //class Ordering{ // Ordering(string key); // void print(string s) const; // bool equals(const Ordering& ord, double tol) const; // Ordering subtract(const Ordering& keys) const; // void unique (); // void reverse (); // void push_back(string s); //}; // //class GaussianFactorSet { // GaussianFactorSet(); // void push_back(GaussianFactor* factor); //}; // //class Simulated2DValues { // Simulated2DValues(); // void print(string s) const; // void insertPose(int i, const Point2& p); // void insertPoint(int j, const Point2& p); // int nrPoses() const; // int nrPoints() const; // Point2* pose(int i); // Point2* point(int j); //}; // //class Simulated2DOrientedValues { // Simulated2DOrientedValues(); // void print(string s) const; // void insertPose(int i, const Pose2& p); // void insertPoint(int j, const Point2& p); // int nrPoses() const; // int nrPoints() const; // Pose2* pose(int i); // Point2* point(int j); //}; // //class Simulated2DPosePrior { // Simulated2DPosePrior(Point2& mu, const SharedDiagonal& model, int i); // void print(string s) const; // double error(const Simulated2DValues& c) const; //}; // //class Simulated2DOrientedPosePrior { // Simulated2DOrientedPosePrior(Pose2& mu, const SharedDiagonal& model, int i); // void print(string s) const; // double error(const Simulated2DOrientedValues& c) const; //}; // //class Simulated2DPointPrior { // Simulated2DPointPrior(Point2& mu, const SharedDiagonal& model, int i); // void print(string s) const; // double error(const Simulated2DValues& c) const; //}; // //class Simulated2DOdometry { // Simulated2DOdometry(Point2& mu, const SharedDiagonal& model, int i1, int i2); // void print(string s) const; // double error(const Simulated2DValues& c) const; //}; // //class Simulated2DOrientedOdometry { // Simulated2DOrientedOdometry(Pose2& mu, const SharedDiagonal& model, int i1, int i2); // void print(string s) const; // double error(const Simulated2DOrientedValues& c) const; //}; // //class Simulated2DMeasurement { // Simulated2DMeasurement(Point2& mu, const SharedDiagonal& model, int i, int j); // void print(string s) const; // double error(const Simulated2DValues& c) const; //}; // //// These are currently broken //// Solve by parsing a namespace pose2SLAM::Values and making a Pose2SLAMValues class //// We also have to solve the shared pointer mess to avoid duplicate methods // //class GaussianFactor { // GaussianFactor(string key1, // Matrix A1, // Vector b_in, // const SharedDiagonal& model); // GaussianFactor(string key1, // Matrix A1, // string key2, // Matrix A2, // Vector b_in, // const SharedDiagonal& model); // GaussianFactor(string key1, // Matrix A1, // string key2, // Matrix A2, // string key3, // Matrix A3, // Vector b_in, // const SharedDiagonal& model); // bool involves(string key) const; // Matrix getA(string key) const; // pair matrix(const Ordering& ordering) const; // pair eliminate(string key) const; //}; // //class GaussianFactorGraph { // GaussianConditional* eliminateOne(string key); // GaussianBayesNet* eliminate_(const Ordering& ordering); // VectorValues* optimize_(const Ordering& ordering); // pair matrix(const Ordering& ordering) const; // VectorValues* steepestDescent_(const VectorValues& x0) const; // VectorValues* conjugateGradientDescent_(const VectorValues& x0) const; //}; // // //class Pose2Values{ // Pose2Values(); // Pose2 get(string key) const; // void insert(string name, const Pose2& val); // void print(string s) const; // void clear(); // int size(); //}; // //class Pose2Factor { // Pose2Factor(string key1, string key2, // const Pose2& measured, Matrix measurement_covariance); // void print(string name) const; // double error(const Pose2Values& c) const; // size_t size() const; // GaussianFactor* linearize(const Pose2Values& config) const; //}; // //class Pose2Graph{ // Pose2Graph(); // void print(string s) const; // GaussianFactorGraph* linearize_(const Pose2Values& config) const; // void push_back(Pose2Factor* factor); //}; // //class SymbolicFactor{ // SymbolicFactor(const Ordering& keys); // void print(string s) const; //}; // //class Simulated2DPosePrior { // GaussianFactor* linearize(const Simulated2DValues& config) const; //}; // //class Simulated2DOrientedPosePrior { // GaussianFactor* linearize(const Simulated2DOrientedValues& config) const; //}; // //class Simulated2DPointPrior { // GaussianFactor* linearize(const Simulated2DValues& config) const; //}; // //class Simulated2DOdometry { // GaussianFactor* linearize(const Simulated2DValues& config) const; //}; // //class Simulated2DOrientedOdometry { // GaussianFactor* linearize(const Simulated2DOrientedValues& config) const; //}; // //class Simulated2DMeasurement { // GaussianFactor* linearize(const Simulated2DValues& config) const; //}; // //class Pose2SLAMOptimizer { // Pose2SLAMOptimizer(string dataset_name); // void print(string s) const; // void update(Vector x) const; // Vector optimize() const; // double error() const; // Matrix a1() const; // Matrix a2() const; // Vector b1() const; // Vector b2() const; //};