/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file Rot3M.cpp * @brief Rotation (internal: 3*3 matrix representation*) * @author Alireza Fathi * @author Christian Potthast * @author Frank Dellaert * @author Richard Roberts */ #include // Get GTSAM_USE_QUATERNIONS macro #ifndef GTSAM_USE_QUATERNIONS #include #include #include #include using namespace std; namespace gtsam { /* ************************************************************************* */ Rot3::Rot3() : rot_(I_3x3) {} /* ************************************************************************* */ Rot3::Rot3(const Point3& col1, const Point3& col2, const Point3& col3) { Matrix3 R; R << col1, col2, col3; rot_ = SO3(R); } /* ************************************************************************* */ Rot3::Rot3(double R11, double R12, double R13, double R21, double R22, double R23, double R31, double R32, double R33) { Matrix3 R; R << R11, R12, R13, R21, R22, R23, R31, R32, R33; rot_ = SO3(R); } /* ************************************************************************* */ Rot3::Rot3(const gtsam::Quaternion& q) : rot_(q.toRotationMatrix()) { } /* ************************************************************************* */ Rot3 Rot3::Rx(double t) { double st = sin(t), ct = cos(t); return Rot3( 1, 0, 0, 0, ct,-st, 0, st, ct); } /* ************************************************************************* */ Rot3 Rot3::Ry(double t) { double st = sin(t), ct = cos(t); return Rot3( ct, 0, st, 0, 1, 0, -st, 0, ct); } /* ************************************************************************* */ Rot3 Rot3::Rz(double t) { double st = sin(t), ct = cos(t); return Rot3( ct,-st, 0, st, ct, 0, 0, 0, 1); } /* ************************************************************************* */ // Considerably faster than composing matrices above ! Rot3 Rot3::RzRyRx(double x, double y, double z, OptionalJacobian<3, 1> Hx, OptionalJacobian<3, 1> Hy, OptionalJacobian<3, 1> Hz) { double cx=cos(x),sx=sin(x); double cy=cos(y),sy=sin(y); double cz=cos(z),sz=sin(z); double ss_ = sx * sy; double cs_ = cx * sy; double sc_ = sx * cy; double cc_ = cx * cy; double c_s = cx * sz; double s_s = sx * sz; double _cs = cy * sz; double _cc = cy * cz; double s_c = sx * cz; double c_c = cx * cz; double ssc = ss_ * cz, csc = cs_ * cz, sss = ss_ * sz, css = cs_ * sz; if (Hx) (*Hx) << 1, 0, 0; if (Hy) (*Hy) << 0, cx, -sx; if (Hz) (*Hz) << -sy, sc_, cc_; return Rot3( _cc,- c_s + ssc, s_s + csc, _cs, c_c + sss, -s_c + css, -sy, sc_, cc_ ); } /* ************************************************************************* */ Rot3 Rot3::normalized() const { /// Implementation from here: https://stackoverflow.com/a/23082112/1236990 /// Essentially, this computes the orthogonalization error, distributes the /// error to the x and y rows, and then performs a Taylor expansion to /// orthogonalize. Matrix3 rot = rot_.matrix(), rot_orth; // Check if determinant is already 1. // If yes, then return the current Rot3. if (std::fabs(rot.determinant()-1) < 1e-12) return Rot3(rot_); Vector3 x = rot.block<1, 3>(0, 0), y = rot.block<1, 3>(1, 0); double error = x.dot(y); Vector3 x_ort = x - (error / 2) * y, y_ort = y - (error / 2) * x; Vector3 z_ort = x_ort.cross(y_ort); rot_orth.block<1, 3>(0, 0) = 0.5 * (3 - x_ort.dot(x_ort)) * x_ort; rot_orth.block<1, 3>(1, 0) = 0.5 * (3 - y_ort.dot(y_ort)) * y_ort; rot_orth.block<1, 3>(2, 0) = 0.5 * (3 - z_ort.dot(z_ort)) * z_ort; return Rot3(rot_orth); } /* ************************************************************************* */ Rot3 Rot3::operator*(const Rot3& R2) const { return Rot3(rot_*R2.rot_); } /* ************************************************************************* */ Matrix3 Rot3::transpose() const { return rot_.matrix().transpose(); } /* ************************************************************************* */ Point3 Rot3::rotate(const Point3& p, OptionalJacobian<3,3> H1, OptionalJacobian<3,3> H2) const { if (H1) *H1 = rot_.matrix() * skewSymmetric(-p.x(), -p.y(), -p.z()); if (H2) *H2 = rot_.matrix(); return rot_.matrix() * p; } /* ************************************************************************* */ // Log map at identity - return the canonical coordinates of this rotation Vector3 Rot3::Logmap(const Rot3& R, OptionalJacobian<3,3> H) { return SO3::Logmap(R.rot_,H); } /* ************************************************************************* */ Rot3 Rot3::CayleyChart::Retract(const Vector3& omega, OptionalJacobian<3,3> H) { if (H) throw std::runtime_error("Rot3::CayleyChart::Retract Derivative"); const double x = omega(0), y = omega(1), z = omega(2); const double x2 = x * x, y2 = y * y, z2 = z * z; const double xy = x * y, xz = x * z, yz = y * z; const double f = 1.0 / (4.0 + x2 + y2 + z2), _2f = 2.0 * f; return Rot3((4 + x2 - y2 - z2) * f, (xy - 2 * z) * _2f, (xz + 2 * y) * _2f, (xy + 2 * z) * _2f, (4 - x2 + y2 - z2) * f, (yz - 2 * x) * _2f, (xz - 2 * y) * _2f, (yz + 2 * x) * _2f, (4 - x2 - y2 + z2) * f); } /* ************************************************************************* */ Vector3 Rot3::CayleyChart::Local(const Rot3& R, OptionalJacobian<3,3> H) { if (H) throw std::runtime_error("Rot3::CayleyChart::Local Derivative"); // Create a fixed-size matrix Matrix3 A = R.matrix(); // Mathematica closed form optimization (procrastination?) gone wild: const double a = A(0, 0), b = A(0, 1), c = A(0, 2); const double d = A(1, 0), e = A(1, 1), f = A(1, 2); const double g = A(2, 0), h = A(2, 1), i = A(2, 2); const double di = d * i, ce = c * e, cd = c * d, fg = f * g; const double M = 1 + e - f * h + i + e * i; const double K = -4.0 / (cd * h + M + a * M - g * (c + ce) - b * (d + di - fg)); const double x = a * f - cd + f; const double y = b * f - ce - c; const double z = fg - di - d; return K * Vector3(x, y, z); } /* ************************************************************************* */ Rot3 Rot3::ChartAtOrigin::Retract(const Vector3& omega, ChartJacobian H) { static const CoordinatesMode mode = ROT3_DEFAULT_COORDINATES_MODE; if (mode == Rot3::EXPMAP) return Expmap(omega, H); if (mode == Rot3::CAYLEY) return CayleyChart::Retract(omega, H); else throw std::runtime_error("Rot3::Retract: unknown mode"); } /* ************************************************************************* */ Vector3 Rot3::ChartAtOrigin::Local(const Rot3& R, ChartJacobian H) { static const CoordinatesMode mode = ROT3_DEFAULT_COORDINATES_MODE; if (mode == Rot3::EXPMAP) return Logmap(R, H); if (mode == Rot3::CAYLEY) return CayleyChart::Local(R, H); else throw std::runtime_error("Rot3::Local: unknown mode"); } /* ************************************************************************* */ Matrix3 Rot3::matrix() const { return rot_.matrix(); } /* ************************************************************************* */ Point3 Rot3::r1() const { return Point3(rot_.matrix().col(0)); } /* ************************************************************************* */ Point3 Rot3::r2() const { return Point3(rot_.matrix().col(1)); } /* ************************************************************************* */ Point3 Rot3::r3() const { return Point3(rot_.matrix().col(2)); } /* ************************************************************************* */ gtsam::Quaternion Rot3::toQuaternion() const { return gtsam::Quaternion(rot_.matrix()); } /* ************************************************************************* */ } // namespace gtsam #endif