%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief Simple robotics example using the pre-built planar SLAM domain % @author Alex Cunningham % @author Frank Dellaert %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% import gtsam.* %% Create the same factor graph as in PlanarSLAMExample i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3); graph = NonlinearFactorGraph; priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]); graph.add(PriorFactorPose2(i1, priorMean, priorNoise)); % add directly to graph odometry = Pose2(2.0, 0.0, 0.0); odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]); graph.add(BetweenFactorPose2(i1, i2, odometry, odometryNoise)); graph.add(BetweenFactorPose2(i2, i3, odometry, odometryNoise)); %% Except, for measurements we offer a choice j1 = symbol('l',1); j2 = symbol('l',2); degrees = pi/180; brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]); if 1 graph.add(BearingRangeFactor2D(i1, j1, Rot2(45*degrees), sqrt(4+4), brNoise)); graph.add(BearingRangeFactor2D(i2, j1, Rot2(90*degrees), 2, brNoise)); else bearingModel = noiseModel.Diagonal.Sigmas(0.1); graph.add(BearingFactor2D(i1, j1, Rot2(45*degrees), bearingModel)); graph.add(BearingFactor2D(i2, j1, Rot2(90*degrees), bearingModel)); end graph.add(BearingRangeFactor2D(i3, j2, Rot2(90*degrees), 2, brNoise)); %% Initialize MCMC sampler with ground truth sample = Values; sample.insert(i1, Pose2(0,0,0)); sample.insert(i2, Pose2(2,0,0)); sample.insert(i3, Pose2(4,0,0)); sample.insert(j1, Point2(2,2)); sample.insert(j2, Point2(4,2)); %% Calculate and plot Covariance Ellipses cla;hold on marginals = Marginals(graph, sample); plot2DTrajectory(sample, [], marginals); plot2DPoints(sample, [], marginals); for j=1:2 key = symbol('l',j); point{j} = sample.atPoint2(key); Q{j}=marginals.marginalCovariance(key); S{j}=chol(Q{j}); % for sampling end p_j1 = sample.atPoint2(j1); p_j2 = sample.atPoint2(j2); plot([sample.atPose2(i1).x; p_j1(1)],[sample.atPose2(i1).y; p_j1(2)], 'c-'); plot([sample.atPose2(i2).x; p_j1(1)],[sample.atPose2(i2).y; p_j1(2)], 'c-'); plot([sample.atPose2(i3).x; p_j2(1)],[sample.atPose2(i3).y; p_j2(2)], 'c-'); view(2); axis auto; axis equal %% Do Sampling on point 2 N=1000; for s=1:N delta = S{2}*randn(2,1); proposedPoint = Point2(point{2} + delta); plotPoint2(proposedPoint,'k.') end