/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file PlanarSLAMExample.cpp * @brief Simple robotics example from tutorial Figure 1.1 (left) by using the * pre-built planar SLAM domain * @author Alex Cunningham */ #include #include // pull in the planar SLAM domain with all typedefs and helper functions defined #include #include using namespace std; using namespace gtsam; using namespace gtsam::planarSLAM; /** * In this version of the system we make the following assumptions: * - All values are axis aligned * - Robot poses are facing along the X axis (horizontal, to the right in images) * - We have bearing and range information for measurements * - We have full odometry for measurements * - The robot and landmarks are on a grid, moving 2 meters each step * - Landmarks are 2 meters away from the robot trajectory */ int main(int argc, char** argv) { // create keys for variables PoseKey x1(1), x2(2), x3(3); PointKey l1(1), l2(2); // create graph container and add factors to it Graph graph; /* add prior */ // gaussian for prior SharedDiagonal prior_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1)); Pose2 prior_measurement(0.0, 0.0, 0.0); // prior at origin graph.addPrior(x1, prior_measurement, prior_model); // add directly to graph /* add odometry */ // general noisemodel for odometry SharedDiagonal odom_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); Pose2 odom_measurement(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case) graph.addOdometry(x1, x2, odom_measurement, odom_model); graph.addOdometry(x2, x3, odom_measurement, odom_model); /* add measurements */ // general noisemodel for measurements SharedDiagonal meas_model = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.2)); // create the measurement values - indices are (pose id, landmark id) Rot2 bearing11 = Rot2::fromDegrees(45), bearing21 = Rot2::fromDegrees(90), bearing32 = Rot2::fromDegrees(90); double range11 = sqrt(4+4), range21 = 2.0, range32 = 2.0; // create bearing/range factors and add them graph.addBearingRange(x1, l1, bearing11, range11, meas_model); graph.addBearingRange(x2, l1, bearing21, range21, meas_model); graph.addBearingRange(x3, l2, bearing32, range32, meas_model); graph.print("Full Graph"); // initialize to noisy points Values initialEstimate; initialEstimate.insert(x1, Pose2(0.5, 0.0, 0.2)); initialEstimate.insert(x2, Pose2(2.3, 0.1,-0.2)); initialEstimate.insert(x3, Pose2(4.1, 0.1, 0.1)); initialEstimate.insert(l1, Point2(1.8, 2.1)); initialEstimate.insert(l2, Point2(4.1, 1.8)); initialEstimate.print("Initial Estimate"); // optimize using Levenberg-Marquardt optimization with an ordering from colamd Values result = optimize(graph, initialEstimate); result.print("Final Result"); return 0; }