/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file Pose2SLAMExampleExpressions.cpp * @brief Expressions version of Pose2SLAMExample.cpp * @date Oct 2, 2014 * @author Frank Dellaert * @author Yong Dian Jian */ // The two new headers that allow using our Automatic Differentiation Expression framework #include #include // Header order is close to far #include #include #include #include #include #include using namespace std; using namespace gtsam; int main(int argc, char** argv) { // 1. Create a factor graph container and add factors to it NonlinearFactorGraph graph; // Create Expressions for unknowns Pose2_ x1(1), x2(2), x3(3), x4(4), x5(5); // 2a. Add a prior on the first pose, setting it to the origin noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1)); graph.push_back(ExpressionFactor(priorNoise, Pose2(0, 0, 0), x1)); // For simplicity, we will use the same noise model for odometry and loop closures noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1)); // 2b. Add odometry factors BinaryExpression::Function f = traits::Between; Expression(traits::Between, x1, x2); graph.push_back(ExpressionFactor(model, Pose2(2, 0, 0 ), between(x1,x2))); graph.push_back(ExpressionFactor(model, Pose2(2, 0, M_PI_2), between(x2,x3))); graph.push_back(ExpressionFactor(model, Pose2(2, 0, M_PI_2), between(x3,x4))); graph.push_back(ExpressionFactor(model, Pose2(2, 0, M_PI_2), between(x4,x5))); // 2c. Add the loop closure constraint graph.push_back(ExpressionFactor(model, Pose2(2, 0, M_PI_2), between(x5,x2))); graph.print("\nFactor Graph:\n"); // print // 3. Create the data structure to hold the initialEstimate estimate to the solution // For illustrative purposes, these have been deliberately set to incorrect values Values initialEstimate; initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2 )); initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2 )); initialEstimate.insert(3, Pose2(4.1, 0.1, M_PI_2)); initialEstimate.insert(4, Pose2(4.0, 2.0, M_PI )); initialEstimate.insert(5, Pose2(2.1, 2.1, -M_PI_2)); initialEstimate.print("\nInitial Estimate:\n"); // print // 4. Optimize the initial values using a Gauss-Newton nonlinear optimizer GaussNewtonParams parameters; parameters.relativeErrorTol = 1e-5; parameters.maxIterations = 100; GaussNewtonOptimizer optimizer(graph, initialEstimate, parameters); Values result = optimizer.optimize(); result.print("Final Result:\n"); // 5. Calculate and print marginal covariances for all variables cout.precision(3); Marginals marginals(graph, result); cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl; cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl; cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl; cout << "x4 covariance:\n" << marginals.marginalCovariance(4) << endl; cout << "x5 covariance:\n" << marginals.marginalCovariance(5) << endl; return 0; }